Abstract:
Inductors are provided in chip assemblies such as in packaged semiconductor chips. The inductors may be incorporated in a chip carrier which forms part of the package, and may include, for example, spiral or serpentine inductors formed from traces on the chip carrier. The chip carrier may include a flap bearing the inductive element, and this flap may be bent to tilt the inductive element out of the plane of the chip carrier to reduce electromagnetic interaction between the inductive element and surrounding electrical components. Other inductors include solenoids formed in part by leads on the chip carrier as, for example, by displacing leads out of the plane of the chip carrier to form loops in vertically-extensive planes transverse to the plane of the chip carrier. Additional features provide trimming of the inductor to a desired inductance value during by breaking or connecting leads during assembly.
Abstract:
An array of chips spaced apart from one another by chip spacing distances, as, for example, an array of chips on a wafer dicing tape is juxtaposed with an array of chip receiving elements spaced apart from one another by receiving element spacing distances different from the chip spacing distances, as, for example, an array of substrates or fixtures spaced apart from one another at distances substantially larger than the chip spacing distances. The juxtaposing step is performed so that a set of chips including less than all of the chips in the array of chips is aligned with a set of the chip receiving elements. This set of chips is transferred to the set of chip receiving elements while the arrays are aligned with one another. The cycle may be repeated using the same or different array of chips, and using the same or different array of chip receiving elements. Numerous small chips can be transferred to large chip receiving elements without handling individual chips, and without the use of equipment such as pick-and-place equipment commonly used for such handling.
Abstract:
A stacked microelectronic assembly comprises a flexible sheet having an obverse surface and a reverse surface and including at least a first panel and a second panel. The second panel and the first panel are adjacent to each other, the second panel including terminals on the reverse surface for mounting to an external circuit. The first panel includes a non-overmolded microelectronic element mounted thereon. The microelectronic element having a rear face and a front face surface, wherein the front face surface confronts the obverse surface of the first panel. During manufacture the flexible sheet is folded to create a stacked microelectronic assembly such that the rear face of the first microelectronic assembly confronts and substantially contacts the obverse surface of the second panel. This results in the second panel being kept substantially flat during subsequent mounting to the external circuit.
Abstract:
A method of making a microelectronic assembly includes juxtaposing a first element having conductive leads thereon with a second element having contacts thereon, and wire bonding the conductive leads on the first element to the contacts on the second element so that elongated bonding wires extend between the conductive leads and the contacts. After the wire bonding step, the first and second elements are moved through a preselected displacement relative to one another so as to deform the bonding wires.
Abstract:
A metal is provided on a polymeric component and the component is subjected to a removal process such as plasma or liquid etching in the presence of an electric field. The etchant selectively attacks the polymer at the boundary between the metal and the polymer, thereby forming gaps alongside the metal. A cover metal may be plated onto the metal in the gaps. The cover metal protects the principal metal during subsequent etching procedures.
Abstract:
A method of making microelectronic assemblies includes temporarily securing one or more microelectronic elements in place on one or more components using one or more temporary securements extending between the microelectronic elements and components and adhering to the elements and components. Conductive features of the elements are connected to conductive features of the components and the temporary securements are released.
Abstract:
A connection component for a microelectronic device such as a semiconductor chip incorporates a support layer and conductive structures extending across a surface of the support layer. The conductive structures have anchors connecting them to the support layer, and releasable or unanchored portions.
Abstract:
A microelectronic package includes a microelectronic element having faces and contacts, the microelectronic element having an outer perimeter, and a substrate overlying and spaced from a first face of the microelectronic element, whereby an outer region of the substrate extends beyond the outer perimeter of the microelectronic element. The microelectronic package includes a plurality of etched conductive posts exposed at a surface of the substrate and being electrically interconnected with the microelectronic element, whereby at least one of the etched conductive posts is disposed in the outer region of the substrate. The package includes an encapsulating mold material in contact with the microelectronic element and overlying the outer region of the substrate, the encapsulating mold material extending outside of the etched conductive posts for defining an outermost edge of the microelectronic package.
Abstract:
A plurality of microelectronic assemblies are made by severing an in-process unit including an upper substrate and lower substrate with microelectronic elements disposed between the substrates. In a further embodiment, a lead frame is joined to a substrate so that the leads project from this substrate. Lead frame is joined to a further substrate with one or more microelectronic elements disposed between the substrates.
Abstract:
A microelectronic unit has a structure including a microelectronic element such as a semiconductor chip with a first contact disposed remote from the periphery of the structure. The unit further includes first and second redistribution conductive pads disposed near a periphery of the structure and a conductive path incorporating first and second conductors extending toward the first contact, these conductors being connected to one another adjacent the first contact. The conductive path is connected to the first contact, and can provide signal routing from the periphery of the unit to the contact without the need for long stubs. A package may include a plurality of such units, which may be stacked on one another with the redistribution conductive pads of the various units connected to one another.