Abstract:
A semiconductor device comprising a high impurity concentration region, the impurity consisting of arsenic and at least one impurity other than arsenic. The number of atoms of the arsenic is smaller than that of the other impurity.
Abstract:
According to an aspect of the present invention, there is provided a semiconductor IC that includes a plurality of standard cells arranged in a first direction on a semiconductor substrate, and a first diffusion layer connected to a first power source and a second diffusion layer connected to a second power source in the each standard cell, wherein the first diffusion layers as well as the second diffusion layers of neighboring standard cells are integrally formed.
Abstract:
A current reference, which may be fabricated on a die, as part of an integrated circuit, or in various other forms, is disclosed. The current reference includes two current sources, both of which provide a substantially temperature stable output current, which may use a differencing circuit to provide a reference output current having a magnitude approximately equal to the difference between the magnitudes of the two substantially temperature stable output currents.
Abstract:
The present invention reduces parasitic capacitance in a capacitive element distribution system by running unit electrode lead lines and common electrode lead lines in different directions so that the conductor lines may be sufficiently separated to suppress parasitic capacitance.
Abstract:
An antifuse redundancy circuit operates with transparency to external circuitry and users. In one embodiment, an antifuse redundancy circuit incorporates two antifuses rather than one. The circuit is arranged so that both antifuses may be simultaneously programmed and read. If a single antifuse is programmed without programming the other antifuse, the antifuse redundancy circuit will register a programmed antifuse. Additionally, if a single programmed antifuse is unintentionally deprogrammed after both antifuses in the redundancy circuit have been programmed, the antifuse redundancy circuit will continue to register a programmed antifuse. The result is both an increase in manufacturing yield and an increase in the reliability of integrated circuits utilizing antifuses.
Abstract:
An integrated circuit constructed using exposure and etching steps in an FET fabrication process incorporates electrical lead structures coupled to distributed IC components to compensate for process variation. The electrical lead structure (10,14,16,24,34is composed of an etchable conductive layer constructed in a configuration with graduated coupling widths (B,C,D,E . . . ) forming a graduated range of respective etchable dimensions arranged in an electrically coupled sequence. A primary lead (IA) is coupled at a first end to the widest coupling width (B). A plurality of secondary leads (0B,0C,0D,0E . . . ) distributed along the electrically coupled sequence of graduated coupling widths are coupled respectively to the distributed electrical component elements (P1B,P1C,P1D,P1E . . . ) (N1B,N1C,N1D,N1E . . . ) (RB,RC,RD,RE . . . ) of a distributed electrical component such as a PMOS transistor (P1) NMOS transistor (N1) or resistor (R). The graduated coupling widths (B,C,D,E . . . ) of the electrical lead structure (10,14,16,24,34) electrically couple the secondary leads (0B,0 C,0D,0E . . . ) to the primary lead (IA) through incremental portions of the electrically coupled sequence of graduated coupling widths. The electrical lead structure compensates for variation in exposure and etching steps by varying the number of distributed electrical component elements in the distributed circuit. In a distributed CMOS transistor structure (12) first and second source lead structures (14,16) are oriented to compensate for process variation in length (L) of etchable conductive layer gate segments (G) by varying the number of distributed complementary PMOS and NMOS transistor elements.
Abstract:
With an increase of integration density in an integrated circuit, the channel length of MIS FET becomes shorter and shorter, which causes a hot carrier effect. To solve the problem, the doping profile of source/drain regions and doping amount must be precisely controlled such that a strong electric field is not generated in a transition region from channel to drain. To obtain this objective, the present invention discloses a method, in which reflowed sidewalls of doped silicate glass having a gentle slope are formed on both sides of a gate electrode, and the gate electrode and the sidewalls thus formed are used as a mask for ion implantation. The depth of ion implantation and the doping amount change gradually from the channel region to the drain region avoiding a generation of the strong electric field and thus alleviates the short channel trouble. The present invention has also an effect of obtaining a passivation layer having gentle slope on the surface and avoiding a broken wire trouble of aluminum wiring.
Abstract:
A monolithic integrated circuit is formed having semiconductor components disposed in surface regions of a semiconductor body, said regions being electrically isolated from the remaining semiconductor body by a pn-junction plane. The regions into which the semiconductor components are formed are electrically isolated by heavily doping surface areas of a substrate with phosphorus, antimony and/or arsenic impurities which are of the opposite conductivity from the substrate. After said doping, an epitaxial layer having a conductivity opposite to that of the substrate is formed over the entire substrate surface with a doping concentration lower than that of the substrate so that during subsequent high temperature processing steps, the substrate impurity out-diffuses into the epitaxial layer and the phosphorus of the heavily doped surface areas diffuses downwardly into the substrate to form a step-like pn-junction surface alternately extending into the substrate and into the epitaxial layer. During subsequent processing operations, an impurity of the same conductivity type as used in the substrate is diffused downwardly from the surface of the epitaxial layer to meet the out-diffused substrate impurity to complete the isolation of surface regions of the semiconductor body into which the semiconductor components are formed.
Abstract:
Characteristics of photolithographically-defined planar semiconductor device pairs made from the same master are different, but many of the differences are regular in kind. To achieve a device pair in which the magnitude of the difference in the characteristics of the elements of the pair is reduced, two pairs are made from the same master. The first element of one pair is connected to the second element of the other pair so that the two operate as one composite element. The second element of the one pair is connected to the first element of the other, similarly for operation as another composite element the characteristics of which closely match those of the one composite element.