Abstract:
The present application discloses various implementations of a semiconductor package including an organic substrate and one or more interposers having through-semiconductor vias (TSVs). Such a semiconductor package may include a contiguous organic substrate having a lower substrate segment including first and second pluralities of lower interconnect pads, the second plurality of lower interconnect pads being disposed in an opening of the lower substrate segment. The contiguous organic substrate may also include an upper substrate segment having an upper width and including first and second pluralities of upper interconnect pads. In addition, the semiconductor package may include at least one interposer having TSVs for electrically connecting the first and second pluralities of lower interconnect pads to the first and second pluralities of upper interconnect pads. The interposer has an interposer width less than the upper width of the upper substrate segment.
Abstract:
A package such as a system in package (SiP) includes a first die disposed in a first mold layer and coupled to a first dielectric layer disposed above the first mold and a second die disposed in a second mold layer and coupled to a second dielectric layer disposed above the second die. A pillar is disposed through the second mold layer and is coupled to a first metal layer disposed above the first dielectric layer. The first metal layer is coupled to the first die, and the pillar is coupled to a second metal layer disposed above the second dielectric layer.
Abstract:
In embodiments described herein, an integrated circuit (IC) package is provided. The IC package may include a substrate, an IC die, and a heat spreader. The IC die may have opposing first and second surfaces, where the first surface of the IC die is coupled to a surface of the substrate. The heat spreader may have a surface coupled to the second surface of the IC die by a thermal interface (TI) material. The surface of the heat spreader may have a micro-recess which may include a micro-channel or a micro-dent to direct a flow of TI material towards or away from a predetermined area of the second surface of the IC die based on temperatures of the substrate, the IC die, and/or the heat spreader.
Abstract:
In an embodiment, a thermal interface material (TIM) is provided. The TIM includes first and a second layers of a first transition metal, and a third layer including a plurality of carbon nanotubes supported in a flexible polymer matrix and a second transition metal coupled to sidewalls of carbon nanotubes. The first and second metal layers are in contact with first and second ends of carbon nanotube. The TIM further includes fourth and fifth layers of an alloy material coupled to the first and second metal layers, respectively. The carbon nanotube based TIM including the layers with transition metal allow improved heat transfer from an integrated circuit die to a heat spreader.
Abstract:
The present application discloses various implementations of a semiconductor package including an organic substrate and one or more interposers having through-semiconductor vias (TSVs). Such a semiconductor package may include a contiguous organic substrate having a lower substrate segment including first and second pluralities of lower interconnect pads, the second plurality of lower interconnect pads being disposed in an opening of the lower substrate segment. The contiguous organic substrate may also include an upper substrate segment having an upper width and including first and second pluralities of upper interconnect pads. In addition, the semiconductor package may include at least one interposer having TSVs for electrically connecting the first and second pluralities of lower interconnect pads to the first and second pluralities of upper interconnect pads. The interposer has an interposer width less than the upper width of the upper substrate segment.
Abstract:
The present application discloses various implementations of a semiconductor package including an organic substrate and one or more interposers having through-semiconductor vias (TSVs). Such a semiconductor package may include a contiguous organic substrate having a lower substrate segment including first and second pluralities of lower interconnect pads, the second plurality of lower interconnect pads being disposed in an opening of the lower substrate segment. The contiguous organic substrate may also include an upper substrate segment having an upper width and including first and second pluralities of upper interconnect pads. In addition, the semiconductor package may include at least one interposer having TSVs for electrically connecting the first and second pluralities of lower interconnect pads to the first and second pluralities of upper interconnect pads. The interposer has an interposer width less than the upper width of the upper substrate segment.
Abstract:
The present application discloses various implementations of a semiconductor package including an organic substrate and one or more interposers having through-semiconductor vias (TSVs). Such a semiconductor package may include a contiguous organic substrate having a lower substrate segment including first and second pluralities of lower interconnect pads, the second plurality of lower interconnect pads being disposed in an opening of the lower substrate segment. The contiguous organic substrate may also include an upper substrate segment having an upper width and including first and second pluralities of upper interconnect pads. In addition, the semiconductor package may include at least one interposer having TSVs for electrically connecting the first and second pluralities of lower interconnect pads to the first and second pluralities of upper interconnect pads. The interposer has an interposer width less than the upper width of the upper substrate segment.
Abstract:
An interface substrate is disclosed which includes an interposer having through-semiconductor vias. An upper and a lower organic substrate are further built around the interposer. The disclosed interface substrate enables the continued use of low cost and widely deployed organic substrates for semiconductor packages while providing several advantages. The separation of the organic substrate into upper and lower substrates enables the cost effective matching of fabrication equipment. By providing an opening in one of the organic substrates, one or more semiconductor dies may be attached to exposed interconnect pads coupled to through-semiconductor vias of the interposer, enabling the use of flip chips with high-density microbump arrays and the accommodation of dies with varied bump pitches. By providing the opening specifically in the upper organic substrate, a package-on-package structure with optimized height may also be provided.
Abstract:
An integrated circuit (IC) package is disclosed that contains high density interconnects to connect multiple dies. The IC package includes an encapsulated layer, a first dielectric layer, and a second dielectric layer. The encapsulated layer forms the base of the IC package and includes the multiple dies. The first dielectric layer positioned between the encapsulated layer and the second layer. The first dielectric layer includes vias to connect to the input/ouput pads of active surfaces of the multiple dies. The second dielectric layer includes interconnect layers where at least one of the interconnect layers forms an electrical path to connect at least two of the multiple dies together. According to embodiments of the present disclosure, the IC package enables a high manufacturing yield due to large tolerances allowed for selection of dies. Embodiments of the present disclosure also increase an amount of input/output interconnection between multiple dies in the IC package. Embodiments of the present disclosure further enable lower manufacturing costs because of the use of mature reconstituted dies and redistribution layer technologies and the lack of a need for an interposer to connect multiple dies.
Abstract:
A 3-dimensional (3-D) magnetic core device includes a substrate, a first magnetic shell formed on the substrate, and a first group of conductive traces embedded in a first insulator layer formed on the first magnetic shell. A magnetic core plane is formed on the first insulator layer, and a second group of conductive traces are embedded in a second insulator layer formed on the magnetic core plane. A second magnetic shell is formed on the second insulator layer, and the first and second group of conductive traces are conductively coupled by using conductive vias.