摘要:
In one aspect, the invention includes an isolation region forming method comprising: a) forming an oxide layer over a substrate; b) forming a nitride layer over the oxide layer, the nitride layer and oxide layer having a pattern of openings extending therethrough to expose portions of the underlying substrate; c) etching the exposed portions of the underlying substrate to form openings extending into the substrate; d) after etching the exposed portions of the underlying substrate, removing portions of the nitride layer while leaving some of the nitride layer remaining over the substrate; and e) after removing portions of the nitride layer, forming oxide within the openings in the substrate, the oxide within the openings forming at least portions of isolation regions. In another aspect, the invention includes an isolation region forming method comprising: a) forming a silicon nitride layer over a substrate; b) forming a masking layer over the silicon nitride layer; c) forming a pattern of openings extending through the masking layer to the silicon nitride layer; d) extending the openings through the silicon nitride layer to the underlying substrate, the silicon nitride layer having edge regions proximate the openings and having a central region between the edge regions; e) extending the openings into the underlying substrate; f) after extending the openings into the underlying substrate, reducing a thickness of the silicon nitride layer at the edge regions to thin the edge regions relative to the central region; and g) forming oxide within the openings.
摘要:
In one aspect, the invention provides a method of forming an integrated circuitry memory device. In one preferred implementation, a conductive layer is formed over both memory array areas and peripheral circuitry areas. A refractory metal layer is formed over the conductive layer to provide conductive structure in both areas. According to a preferred aspect of this implementation, the conductive layer which is formed over the memory array provides an electrical contact for a capacitor container to be formed. According to another preferred aspect of this implementation, the conductive layer formed over the peripheral circuitry area constitutes a conductive line which includes at least some of the silicide. In another preferred implementation, the invention provides a method of forming a capacitor container over a substrate. According to a preferred aspect of this implementation, a conductive layer is elevationally interposed between an upper insulating layer and a lower conductive layer over the substrate. The upper insulating layer is etched relative to the interposed conductive layer to form a capacitor container first portion. Subsequently, the interposed conductive layer is etched to form a capacitor container second portion.
摘要:
The invention includes a number of methods and structures pertaining to semiconductor circuit technology, including: methods of forming DRAM memory cell constructions; methods of forming capacitor constructions; DRAM memory cell constructions; capacitor constructions; and monolithic integrated circuitry. The invention includes a method of forming a capacitor comprising the following steps: a) forming a mass of silicon material over a node location, the mass comprising exposed doped silicon and exposed undoped silicon; b) substantially selectively forming rugged polysilicon from the exposed undoped silicon and not from the exposed doped silicon; and c) forming a capacitor dielectric layer and a complementary capacitor plate proximate the rugged polysilicon and doped silicon. The invention also includes a capacitor comprising: a) a first capacitor plate; b) a second capacitor plate; c) a capacitor dielectric layer intermediate the first and second capacitor plates; and d) at least one of the first and second capacitor plates comprising a surface against the capacitor dielectric layer and wherein said surface comprises both doped rugged polysilicon and doped non-rugged polysilicon.
摘要:
In one aspect, the invention provides a method of forming an integrated circuitry memory device. In one preferred implementation, a conductive layer is formed over both memory array areas and peripheral circuitry areas. A refractory metal layer is formed over the conductive layer to provide conductive structure in both areas. According to a preferred aspect of this implementation, the conductive layer which is formed over the memory array provides an electrical contact for a capacitor container to be formed. According to another preferred aspect of this implementation, the conductive layer formed over the peripheral circuitry area constitutes a conductive line which includes at least some of the silicide. In another preferred implementation, the invention provides a method of forming a capacitor container over a substrate. According to a preferred aspect of this implementation, a conductive layer is elevationally interposed between an upper insulating layer and a lower conductive layer over the substrate. The upper insulating layer is etched relative to the interposed conductive layer to form a capacitor container first portion. Subsequently, the interposed conductive layer is etched to form a capacitor container second portion.
摘要:
Disclosed is a three-dimensional integrated memory cell having a high interior volume and a method for constructing the same. The cell makes use of a highly conductive substrate material for the bottom electrode, allowing construction of a thin substrate without intolerable resistance. The substrate of the preferred embodiment, for example, comprises titanium silicide. The preferred method comprises conformal deposition of a thin polysilicon layer within a high aspect ratio container, followed by deposition of a suitable metal for silicidation with the polysilicon layer. The metal need not be conformal for this preferred method and may be deposited by sputter deposition. After silicidation, excess metal is selectively etched away to leave a conformal, thin yet highly conductive substrate material. The greater volume available due to this thinner substrate permits either scaling down of the cell dimension for more dense arrays with maintained capacitance per memory cell, or use of larger microstructures over the bottom electrode substrate, such as hemispherical grained silicon layers, for increased electrode surface area and greater capacitance.
摘要:
In one aspect, the invention provides a method of forming an integrated circuitry memory device. In one preferred implementation, a conductive layer is formed over both memory array areas and peripheral circuitry areas. A refractory metal layer is formed over the conductive layer to provide conductive structure in both areas. According to a preferred aspect of this implementation, the conductive layer which is formed over the memory array provides an electrical contact for a capacitor container to be formed. According to another preferred aspect of this implementation, the conductive layer formed over the peripheral circuitry area constitutes a conductive line which includes at least some of the silicide. In another preferred implementation, the invention provides a method of forming a capacitor container over a substrate. According to a preferred aspect of this implementation, a conductive layer is elevationally interposed between an upper insulating layer and a lower conductive layer over the substrate. The upper insulating layer is etched relative to the interposed conductive layer to form a capacitor container first portion. Subsequently, the interposed conductive layer is etched to form a capacitor container second portion.
摘要:
Methods for fabricating semiconductor-metal-on-insulator (SMOI) structures include forming an acceptor wafer including an insulator material on a first semiconductor substrate, forming a donor wafer including a conductive material and an amorphous silicon material on a second semiconductor substrate, and bonding the amorphous silicon material of the donor wafer to the insulator material of the acceptor wafer. SMOI structures formed from such methods are also disclosed, as are semiconductor devices including such SMOI structures.
摘要:
A method of forming a resistive memory element comprises forming an oxide material over a first electrode. The oxide material is exposed to a plasma process to form a treated oxide material. A second electrode is formed on the treated oxide material. Additional methods of forming a resistive memory element, as well as related resistive memory elements, resistive memory cells, and resistive memory devices are also described.
摘要:
Sacrificial plugs for forming contacts in integrated circuits, as well as methods of forming connections in integrated circuit arrays are disclosed. Various pattern transfer and etching steps can be used to create densely-packed features and the connections between features. A sacrificial material can be patterned in a continuous zig-zag line pattern that crosses word lines. Planarization can create parallelogram-shaped blocks of material that can overlie active areas to form sacrificial plugs, which can be replaced with conductive material to form contacts.
摘要:
Some embodiments include a memory device and methods of forming the memory device. One such memory device includes a first group of memory cells, each of the memory cells of the first group being formed in a cavity of a first control gate located in one device level of the memory device. The memory device also includes a second group of memory cells, each of the memory cells of the second group being formed in a cavity of a second control gate located in another device level of the memory device. Additional apparatus and methods are described.