Abstract:
An IC may include an array of memory cells formed in a semiconductor, including memory cells arranged in rows and columns, each memory cell may include a floating body region defining at least a portion of a surface of the memory cell, the floating body region having a first conductivity type; a buried region located within the memory cell and located adjacent to the floating body region, wherein the buried region has a second conductivity type, wherein the floating body region is bounded on a first side by a first insulating region having a first thickness and on a second side by a second insulating region having a second thickness, and a gate region above the floating body region and the second insulating region and is insulated from the floating body region by an insulating layer; and control circuitry configured to provide electrical signals to said buried region.
Abstract:
Methods and systems are described herein for determining if bit cell read or write rates require a refresh of the accessed or neighboring bit cells. The refresh of VLT memory bit cells that undergo a high frequency of page address read operations and write operations helps to maintain integrity of data stored in the VLT memory bit cells. The methods and systems determine, during each RAS cycle, if a rate of Page Address read operations or write operations exceeds a maximum rate across an interval, and conditionally cause a refresh operation if the rate exceeds the maximum rate. The methods and systems output a write back signal to cause a refresh of the associated VLT memory bit cells to prevent corruption of data stored in the associated VLT memory bit cells.
Abstract:
A vertical thyristor memory array including: a vertical thyristor memory cell, the vertical thyristor memory cell including: a p+ anode; an n-base located below the p+ anode; a p-base located below the n-base; a n+ cathode located below the p-base; an isolation trench located around the vertical thyristor memory cell; an assist gate located in the isolation trench adjacent the n-base wherein an entire vertical height of the assist gate is positioned within an entire vertical height of the n-base.
Abstract:
A memory device, an operating method of the memory device, and a fabricating method of the memory device are provided. A memory device includes: a semiconductor column extending vertically on a substrate and including a source region of a first conductivity type, an intrinsic region, and a drain region of a second conductivity type; a first gate electrode disposed adjacent to the drain region to cover the intrinsic region; a second gate electrode spaced apart from the first gate electrode and disposed adjacent to the source region to cover the intrinsic region; a first gate electrode disposed between the first gate electrode and the intrinsic region; and a second gate insulating layer disposed between the second gate electrode and the intrinsic region.
Abstract:
This invention provides a memory structure and an operation method thereof. The memory structure includes a triode for alternating current (TRIAC) and a memory cell. The memory cell is electrically connected to the TRIAC.
Abstract:
A two-transistor memory cell based upon a thyristor for an SRAM integrated circuit is described together with methods of operation. The memory cell can be implemented in different combinations of MOS and bipolar select transistors, or without select transistors, with thyristors in a semiconductor substrate with shallow trench isolation. Standard CMOS process technology can be used to manufacture the SRAM.
Abstract:
A volatile memory array using vertical thyristors is disclosed together with methods of operating the array to read data from and write data to the array.
Abstract:
Some embodiments include thyristors having first and second electrode regions, first and second base regions, and material having a bandgap of at least 1.2 eV in at least one of the regions. The first base region is between the first electrode region and the second base region, and the second base region is between the second electrode region and the first base region. The first base region interfaces with the first electrode region at a first junction, and interfaces with the second base region at a second junction. The second base region interfaces with the second electrode region at a third junction. A gate is along the first base region, and in some embodiments does not overlap either of the first and second junctions. Some embodiments include methods of programming thyristors, and some embodiments include methods of forming thyristors.
Abstract:
A memory cell according to the present invention comprises a bottom conductor, a doped semiconductor pillar, and a top conductor. The memory cell does not include a dielectric rupture antifuse separating the doped semiconductor pillar from either conductor, or within the semiconductor pillar. The memory cell is formed in a high-impedance state, in which little or no current flows between the conductors on application of a read voltage. Application of a programming voltage programs the cell, converting the memory cell from its initial high-impedance state to a low-impedance state. A monolithic three dimensional memory array of such cells can be formed, comprising multiple memory levels, the levels monolithically formed above one another.
Abstract:
Techniques for providing a direct injection semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a method for biasing a direct injection semiconductor memory device including the steps of applying a first non-negative voltage potential to a first region via a bit line and applying a second non-negative voltage potential to a second region via a source line. The method may also include applying a third voltage potential to a word line, wherein the word line may be spaced apart from and capacitively to a body region that may be electrically floating and disposed between the first region and the second region. The method may further include applying a fourth positive voltage potential to a third region via a carrier injection line, wherein the third region may be disposed below at least one of the first region, the body region, and the second region.