Abstract:
Disclosed is a surge protection system for use with an ion source assembly. The system comprises a high voltage power source coupled in series with a thermionic diode and an ion source assembly. The high voltage power supply is enclosed in the pressure tank and drives the ion source assembly. The thermionic diode is comprised of an insulating tube disposed between the ion source assembly enclosure and the output of the high voltage power supply and makes use of existing ion source assembly components to limit damage to the power supply during arc failures of the ion source assembly.
Abstract:
In a charged particle accelerator, voltage of several tens of kV is applied between accelerating electrodes. In such a case, electric discharge is sometimes generated between the accelerating electrodes. In the charged particle accelerator, part or entirety of the accelerating electrodes is coated with an electric discharge suppressing layer made of ceramics or alloy having a high melting point as compared with metal. When impurity fine particles are accelerated by an electric field and collide with the electrodes, the electric discharge suppressing layer made of ceramics or alloy prevents metal vapor from being easily generated from the electrodes and an ionized plasma from being easily produced, thus suppressing electric discharge between the electrodes.
Abstract:
Disclosed is a method for limiting the voltage applied to a component in a radio frequency path (RF path) of a radio frequency excitation system. According to the method, a radio frequency signal (RF signal) is tapped at a first random point of the RF path, and energy is withdrawn from the RF path when the RF signal tapped at the first point or a value proportional to the tapped RF signal exceeds a reference value, resulting in the component being protected against excess voltages due to disturbances.
Abstract:
There is provided an electron beam control device which controls an electron beam for use, such as an electron microscope, an electron beam exposure device and the like wherein a track of an electron beam is not adversely influenced by the amount of magnetic variation occurring from surrounding influences. The electron beam control device which controls an electron beam for use, such as an electron microscope, an electron beam exposure device and the like wherein a magnetometric sensor for measuring an amount of magnetic variation which influences a track of the electron beam, occurring from surrounding influences, is provided.
Abstract:
A clamping ring configured to be coupled to a chamber structure of a plasma processing chamber is disclosed. The clamping ring has a plurality of holes for accommodating a plurality of fasteners. The clamping ring includes a plurality of flanges disposed around an outer periphery of the clamping ring, adjacent flanges of the plurality of flanges being disposed such that a hole of the plurality of holes that is disposed in between the adjacent flanges is about equidistant from the adjacent flanges. The plurality of flanges are configured to mate with the chamber structure. The clamping ring and the flanges are dimensioned such that when the plurality of flanges mate with the chamber structure, recesses between adjacent ones of the plurality of flanges form gaps between the clamping ring and the chamber structure.
Abstract:
A sintered body contains perovskite YAlO3 (YAP) as a main phase exhibited in X-ray diffractometry, and has a Vickers hardness of 11 GPa or more. In the case where the sintered body contains a composition other than YAlO3, the composition preferably substantially consists of Y3Al5O12 and Y4Al2O9. The sintered body preferably has an absolute density of 5.1 g/cm3 or more. The sintered body preferably has an open porosity of 1% or less, and also preferably has an average crystal grain size of 10 μm or less.
Abstract:
A substrate treating apparatus includes a chamber having a treatment space therein, a substrate support unit that supports a substrate in the treatment space, a gas supply unit that supplies a gas into the treatment space, and a plasma generation unit including an RF power supply that applies RF power, wherein the plasma generation unit generates plasma from the gas using the RF power. The substrate support unit includes a support plate that supports the substrate and a heating unit that controls temperature of the substrate. The heating unit includes a heating member, a heater power supply that applies power to the heating member, and a filter unit that prevents coupling of the heating member and the RF power supply. The filter unit includes a filter that interrupts the RF power supplied from the RF power supply and a filter control unit that prevents degradation in performance of the filter.
Abstract:
A apparatus for vacuum sputter deposition is described. The apparatus includes, a vacuum chamber; three or more sputter cathodes within the vacuum chamber for sputtering material on a substrate; a gas distribution system for providing a processing gas including H2 to the vacuum chamber; a vacuum system for providing a vacuum inside the vacuum chamber; and a safety arrangement for reducing the risk of an oxy-hydrogen explosion, wherein the safety arrangement comprises a dilution gas feeding unit connected to the vacuum system for dilution of the H2-content of the processing gas.
Abstract:
A charged-particle beam microscope is provided for imaging a sample. The microscope has a vacuum chamber to maintain a low-pressure environment. A stage is provided to hold a sample in the vacuum chamber. The microscope has a compact evaporator in the vacuum chamber to evaporate and deposit a coating onto a surface of the sample. The microscope also has a charged-particle beam column is provided to direct a charged-particle beam onto the coating on the surface of the sample. The charged-particle beam column includes a charged-particle beam source to generate a charged-particle beam and charged-particle beam optics to converge the charged-particle beam onto the sample. A detector is provided to detect charged-particle radiation emanating from the coating on the surface of the sample to generate an image. A controller analyzes the detected charged-particle radiation to generate an image of the sample.
Abstract:
An apparatus for extending the useful life of an ion source, comprising an arc chamber containing a plurality of cathodes to be used sequentially and a plurality of repellers to protect cathodes when not in use. The arc chamber includes an arc chamber housing defining a reaction cavity, gas injection openings, a plurality of cathodes, and at least one repeller element. A method for extending the useful life of an ion source includes providing power to a first cathode of an arc chamber in an ion source, operating the first cathode, detecting a failure or degradation in performance of the first cathode, energizing a second cathode, and continuing operation of the arc chamber with the second cathode.