Abstract:
A semiconductor device has a semiconductor die and first insulating layer formed over the semiconductor die. A plurality of first micro-vias can be formed in the first insulating layer. A conductive layer is formed in the first micro-openings and over the first insulating layer. A second insulating layer is formed over the first insulating layer and conductive layer. A portion of the second insulating layer is removed to expose the conductive layer and form a plurality of second micro-openings in the second insulating layer over the conductive layer. The second micro-openings can be micro-vias, micro-via ring, or micro-via slots. Removing the portion of the second insulating layer leaves an island of the second insulating layer over the conductive layer. A bump is formed over the conductive layer. A third insulating layer is formed in the second micro-openings over the bump. The second micro-openings provide stress relief.
Abstract:
A semiconductor device includes an IPD structure, a first semiconductor die mounted to the IPD structure with a flipchip interconnect, and a plurality of first conductive posts that are disposed adjacent to the first semiconductor die. The semiconductor device further includes a first molding compound that is disposed over the first conductive posts and first semiconductor die, a core structure bonded to the first conductive posts over the first semiconductor die, and a plurality of conductive TSVs disposed in the core structure. The semiconductor device further includes a plurality of second conductive posts that are disposed over the core structure, a second semiconductor die mounted over the core structure, and a second molding compound disposed over the second conductive posts and the second semiconductor die. The second semiconductor die is electrically connected to the core structure.
Abstract:
A semiconductor device has a semiconductor die and conductive layer formed over a surface of the semiconductor die. A first channel can be formed in the semiconductor die. An encapsulant is deposited over the semiconductor die. A second channel can be formed in the encapsulant. A first insulating layer is formed over the semiconductor die and first conductive layer and into the first channel. The first insulating layer extends into the second channel. The first insulating layer has characteristics of tensile strength greater than 150 MPa, elongation between 35-150%, and thickness of 2-30 micrometers. A second insulating layer can be formed over the semiconductor die prior to forming the first insulating layer. An interconnect structure is formed over the semiconductor die and encapsulant. The interconnect structure is electrically connected to the first conductive layer. The first insulating layer provides stress relief during formation of the interconnect structure.
Abstract:
A semiconductor device is made by providing a temporary carrier for supporting the semiconductor device. An integrated passive device (IPD) is mounted to the temporary carrier using an adhesive. The IPD includes a capacitor and a resistor and has a plurality of through-silicon vias (TSVs). A discrete component is mounted to the temporary carrier using the adhesive. The discrete component includes a capacitor. The IPD and the discrete component are encapsulated using a molding compound. A first metal layer is formed over the molding compound. The first metal layer is connected to the TSVs of the IPD and forms an inductor. The temporary carrier and the adhesive are removed, and a second metal layer is formed over the IPD and the discrete component. The second metal layer interconnects the IPD and the discrete component and forms an inductor. An optional interconnect structure is formed over the second metal layer.
Abstract:
A semiconductor device has a semiconductor die and first conductive layer formed over a surface of the semiconductor die. A first insulating layer is formed over the surface of the semiconductor die. A second insulating layer is formed over the first insulating layer and first conductive layer. An opening is formed in the second insulating layer over the first conductive layer. A second conductive layer is formed in the opening over the first conductive layer and second insulating layer. The second conductive layer has a width that is less than a width of the first conductive layer along a first axis. The second conductive layer has a width that is greater than a width of the first conductive layer along a second axis perpendicular to the first axis. A third insulating layer is formed over the second conductive layer and first insulating layer.
Abstract:
A semiconductor wafer has a plurality of first semiconductor die. A first conductive layer is formed over an active surface of the die. A first insulating layer is formed over the active surface and first conductive layer. A repassivation layer is formed over the first insulating layer and first conductive layer. A via is formed through the repassivation layer to the first conductive layer. The semiconductor wafer is singulated to separate the semiconductor die. The semiconductor die is mounted to a temporary carrier. An encapsulant is deposited over the semiconductor die and carrier. The carrier is removed. A second insulating layer is formed over the repassivation layer and encapsulant. A second conductive layer is formed over the repassivation layer and first conductive layer. A third insulating layer is formed over the second conductive layer and second insulating layer. An interconnect structure is formed over the second conductive layer.
Abstract:
A semiconductor wafer has a first conductive layer formed over its active surface. A first insulating layer is formed over the substrate and first conductive layer. A second conductive layer is formed over the first conductive layer and first insulating layer. A UBM layer is formed around a bump formation area over the second conductive layer. The UBM layer can be two stacked metal layers or three stacked metal layers. The second conductive layer is exposed in the bump formation area. A second insulating layer is formed over the UBM layer and second conductive layer. A portion of the second insulating layer is removed over the bump formation area and a portion of the UBM layer. A bump is formed over the second conductive layer in the bump formation area. The bump contacts the UBM layer to seal a contact interface between the bump and second conductive layer.
Abstract:
A semiconductor device has a first insulation layer formed over a sacrificial substrate. A first conductive layer is formed over the first insulating layer. Conductive pillars are formed over the first conductive layer. A pre-fabricated IPD is disposed between the conductive pillars. An encapsulant is formed around the IPD and conductive pillars. A second insulation layer is formed over the encapsulant. The conductive pillars are electrically connected to the first and second conductive layers. The first and second conductive layers each include an inductor. Semiconductor devices are mounted over the first and second insulating layer and electrically connected to the first and second conductive layers, respectively. An interconnect structure is formed over the first and second insulating layers, respectively, and electrically connected to the first and second conductive layers. The sacrificial substrate is removed. The semiconductor devices can be stacked and electrically interconnected through the conductive pillars.
Abstract:
A semiconductor device is made by providing a temporary carrier for supporting the semiconductor device. An integrated passive device (IPD) is mounted to the temporary carrier using an adhesive. The IPD includes a capacitor and a resistor and has a plurality of through-silicon vias (TSVs). A discrete component is mounted to the temporary carrier using the adhesive. The discrete component includes a capacitor. The IPD and the discrete component are encapsulated using a molding compound. A first metal layer is formed over the molding compound. The first metal layer is connected to the TSVs of the IPD and forms an inductor. The temporary carrier and the adhesive are removed, and a second metal layer is formed over the IPD and the discrete component. The second metal layer interconnects the IPD and the discrete component and forms an inductor. An optional interconnect structure is formed over the second metal layer.
Abstract:
A method of manufacturing a semiconductor device includes providing a substrate with an insulation layer disposed on a top surface of the substrate, forming a passive device over the top surface of the substrate, removing the substrate, depositing an insulating polymer film layer over the insulation layer, and depositing a metal layer over the insulating polymer film layer. A solder mask can be formed over the metal layer. A conformal metal layer can then be formed over the solder mask. A notch can be formed in the insulation layer to enhance the connection between the insulating polymer film layer and the insulation layer. Additional semiconductor die can be electrically connected to the passive device. The substrate is removed by removing a first amount of the substrate using a back grind process, and then removing a second amount of the substrate using a wet dry, dry etch, or chemical-mechanical planarization process.