Abstract:
A fabrication method of a semiconductor package is disclosed, which includes the steps of: providing a semiconductor structure having a carrier, a circuit portion formed on the carrier and a plurality of semiconductor elements disposed on the circuit portion; disposing a lamination member on the semiconductor elements; forming an insulating layer on the circuit portion for encapsulating the semiconductor elements; and removing the carrier. The lamination member increases the strength between adjacent semiconductor elements so as to overcome the conventional cracking problem caused by a CTE mismatch between the semiconductor elements and the insulating layer when the carrier is removed.
Abstract:
A semiconductor device is provided, including: a substrate having opposing first and second surfaces and a plurality of conductive vias passing through the first and second surfaces; an insulating layer formed on the first surface of the substrate and exposing end portions of the conductive vias therefrom; and a buffer layer formed on the insulating layer at peripheries of the end portions of the conductive vias, thereby increasing product reliability and good yield.
Abstract:
A conductive bump structure used to be formed on a substrate having a plurality of bonding pads. The conductive bump structure includes a first metal layer formed on the bonding pads, a second metal layer formed on the first metal layer, and a third metal layer formed on the second metal layer. The second metal layer has a second melting point higher than a third melting point of the third metal layer. Therefore, a thermal compression bonding process is allowed to be performed to the third metal layer first so as to bond the substrate to another substrate, and then a reflow process can be performed to melt the second metal layer and the third metal layer into each other so as to form an alloy portion, thus avoiding cracking of the substrate.
Abstract:
A semiconductor package is provided. The semiconductor package includes a semiconductor chip having opposite first and second surfaces; an RDL structure formed on the first surface of the semiconductor chip and having opposite third and fourth surfaces and a plurality of first conductive through holes penetrating the third and fourth surfaces thereof, wherein the RDL structure is formed on the semiconductor chip through the fourth surface thereof and electrically connected to the semiconductor chip through a plurality of first conductive elements, and the third surface of the RDL structure has a redistribution layer formed thereon; a plurality of conductive bumps formed on the redistribution layer; and an encapsulant formed on the first surface of the semiconductor chip for encapsulating the RDL structure, wherein the conductive bumps are embedded in and exposed from the encapsulant. The invention effectively prevents warpage of the semiconductor package and improves the electrical connection significantly.
Abstract:
A method of testing a semiconductor package is provided, including: disposing at least an interposer on a top surface of an adhesive layer, the interposer having a first surface and a second surface opposite to the first surface, a plurality of conductive elements disposed between the second surface of the interposer and the adhesive layer; disposing at least a semiconductor chip on the first surface of the interposer, and performing an electrical test on the semiconductor chip via the conductive elements, wherein if there are a plurality of semiconductor chips that are disposed on the first surface of the interposer, the step of disposing the semiconductor chip and performing the electrical test on the semiconductor chip is iterated; and removing the adhesive layer. By using the method, the fabrication cost and equipment cost of the semiconductor package are reduced, and product yield is increased.
Abstract:
A semiconductor package is provided, including a semiconductor substrate having a plurality of conductive vias, a buffer layer formed on the semiconductor substrate, a plurality of conductive pads formed on end surfaces of the conductive vias and covering the buffer layer. During a reflow process, the buffer layer greatly reduces the thermal stress, thereby eliminating the occurance of cracking at the interface of conductive pads. A method of fabricating such a semiconductor package is also provided.
Abstract:
A semiconductor package is provided, including: a carrier; at least an interposer disposed on the carrier; an encapsulant formed on the carrier for encapsulating the interposer while exposing a top side of the interposer; a semiconductor element disposed on the top side of the interposer; and an adhesive formed between the interposer and the semiconductor element. By encapsulating the interposer with the encapsulant, warpage of the interposer is avoided and a planar surface is provided for the semiconductor element to be disposed thereon, thereby improving the reliability of electrical connection between the interposer and the semiconductor element.
Abstract:
A semiconductor package is provided, which includes: a carrier; at least an interposer disposed on the carrier; an encapsulant formed on the carrier for encapsulating the interposer while exposing a top surface of the interposer; a redistribution layer formed on the encapsulant and the top surface of the interposer; and at least a semiconductor element disposed on the redistribution layer. The top surface of the interposer is flush with a surface of the encapsulant so as for the redistribution layer to have a planar surface for disposing the semiconductor element, thereby preventing warpage of the interposer and improving the reliability of electrical connection between the redistribution layer and the semiconductor element.
Abstract:
A fabrication method of a semiconductor package is disclosed, which includes the steps of: disposing a plurality of first semiconductor elements on an interposer; forming a first encapsulant on the interposer for encapsulating the first semiconductor elements; disposing a plurality of second semiconductor elements on the first semiconductor elements; forming a second encapsulant on the first semiconductor elements and the first encapsulant for encapsulating the second semiconductor elements; and thinning the interposer, thereby reducing the overall stack thickness and preventing warpage of the interposer.
Abstract:
A method of fabricating a semiconductor package is provided, including: cutting a substrate into a plurality of interposers; disposing the interposers in a plurality of openings of a carrier, wherein the openings are spaced from one another by a distance; forming a first encapsulant to encapsulate the interposers; removing the carrier; and disposing at least a semiconductor element on each of the interposers. By cutting the substrate first, good interposers can be selected and rearranged such that finished packages can be prevented from being wasted due to inferior interposers.