Abstract:
An electronic package and a method for fabricating the same are provided. The electronic package includes a stepped recess formed at a peripheral portion of a packaging module to release stress of the electronic package.
Abstract:
A semiconductor package is provided, including: a carrier; at least an interposer disposed on the carrier; an encapsulant formed on the carrier for encapsulating the interposer while exposing a top side of the interposer; a semiconductor element disposed on the top side of the interposer; and an adhesive formed between the interposer and the semiconductor element. By encapsulating the interposer with the encapsulant, warpage of the interposer is avoided and a planar surface is provided for the semiconductor element to be disposed thereon, thereby improving the reliability of electrical connection between the interposer and the semiconductor element.
Abstract:
A semiconductor package is provided, including: a carrier; at least an interposer disposed on the carrier; an encapsulant formed on the carrier for encapsulating the interposer while exposing a top side of the interposer; a semiconductor element disposed on the top side of the interposer; and an adhesive formed between the interposer and the semiconductor element. By encapsulating the interposer with the encapsulant, warpage of the interposer is avoided and a planar surface is provided for the semiconductor element to be disposed thereon, thereby improving the reliability of electrical connection between the interposer and the semiconductor element.
Abstract:
A semiconductor package is provided, which includes: a semiconductor substrate having opposite first and second surfaces; an adhesive layer formed on the first surface of the semiconductor substrate; at least a semiconductor chip disposed on the adhesive layer; an encapsulant formed on the adhesive layer for encapsulating the semiconductor chip; and a plurality of conductive posts penetrating the first and second surfaces of the semiconductor substrate and the adhesive layer and electrically connected to the semiconductor chip, thereby effectively reducing the fabrication cost, shortening the fabrication time and improving the product reliability.
Abstract:
A semiconductor package is provided, which includes: a semiconductor substrate having opposite first and second surfaces; an adhesive layer formed on the first surface of the semiconductor substrate; at least a semiconductor chip disposed on the adhesive layer; an encapsulant formed on the adhesive layer for encapsulating the semiconductor chip; and a plurality of conductive posts penetrating the first and second surfaces of the semiconductor substrate and the adhesive layer and electrically connected to the semiconductor chip, thereby effectively reducing the fabrication cost, shortening the fabrication time and improving the product reliability.
Abstract:
An electronic package and a method for fabricating an electronic package are provided. An encapsulation layer encapsulates a first electronic component and a plurality of conductive pillars, and is defined with a reservation region and a removal region adjacent to the reservation region. A circuit structure is disposed on the encapsulation layer. The removal region and the circuit structure therewithin are removed for an optical communication element to protrude from a lateral surface of the encapsulation layer when the optical communication element is disposed on the circuit structure, so as to avoid a packaging material used in a subsequent process from being adhered to a protruding portion of the optical communication element.
Abstract:
An electronic package and a method for fabricating an electronic package are provided. An encapsulation layer encapsulates a first electronic component and a plurality of conductive pillars, and is defined with a reservation region and a removal region adjacent to the reservation region. A circuit structure is disposed on the encapsulation layer. The removal region and the circuit structure therewithin are removed for an optical communication element to protrude from a lateral surface of the encapsulation layer when the optical communication element is disposed on the circuit structure, so as to avoid a packaging material used in a subsequent process from being adhered to a protruding portion of the optical communication element.
Abstract:
A method of fabricating a semiconductor package is provided, including: cutting a substrate into a plurality of interposers; disposing the interposers in a plurality of openings of a carrier, wherein the openings are spaced from one another by a distance; forming a first encapsulant to encapsulate the interposers; removing the carrier; and disposing at least a semiconductor element on each of the interposers. By cutting the substrate first, good interposers can be selected and rearranged such that finished packages can be prevented from being wasted due to inferior interposers.
Abstract:
A semiconductor package is provided, including: a carrier; at least an interposer disposed on the carrier; an encapsulant formed on the carrier for encapsulating the interposer while exposing a top side of the interposer; a semiconductor element disposed on the top side of the interposer; and an adhesive formed between the interposer and the semiconductor element. By encapsulating the interposer with the encapsulant, warpage of the interposer is avoided and a planar surface is provided for the semiconductor element to be disposed thereon, thereby improving the reliability of electrical connection between the interposer and the semiconductor element.
Abstract:
An electronic package and a method for fabricating the same are provided. The electronic package includes a stepped recess formed at a peripheral portion of a packaging module to release stress of the electronic package.