Abstract:
Semiconductor devices are provided. A semiconductor device includes gaps between conductive patterns. Moreover, the semiconductor device includes a permeable layer on the conductive patterns. Methods of fabricating semiconductor devices are also provided.
Abstract:
A method of treating a porous dielectric layer includes preparing a substrate on which the porous dielectric layer including an opening and pores exposed by the opening is formed, supplying a first precursor onto the substrate to form a first sub-sealing layer sealing the exposed pores, and supplying a second precursor onto the first sub-sealing layer to form a second sub-sealing layer covering the first sub-sealing layer. Each of the first and second precursors includes silicon, and a molecular weight of the second precursor is smaller than that of the first precursor.
Abstract:
Semiconductor devices are provided. A semiconductor device includes gaps between conductive patterns. Moreover, the semiconductor device includes a permeable layer on the conductive patterns. Methods of fabricating semiconductor devices are also provided.
Abstract:
The present inventive concepts provide semiconductor devices and methods for fabricating the same. The method includes forming an inter-metal dielectric layer including a plurality of dielectric layers on a substrate, forming a via-hole vertically penetrating the inter-metal dielectric layer and the substrate, providing carbon to at least one surface, such as a surface including carbon in the plurality of dielectric layers exposed by the via-hole, forming a via-dielectric layer covering an inner surface of the via-hole, and forming a through-electrode surrounded by the via-dielectric layer in the via-hole.
Abstract:
A semiconductor device may include a substrate, a first interlayered insulating layer on the substrate having openings, conductive patterns provided in the openings, first to fourth insulating patterns stacked on the substrate provided with the conductive patterns, and a second interlayered insulating layer provided on the fourth insulating pattern.
Abstract:
A method of manufacturing a semiconductor package including forming a photoresist pattern on a first surface of an interposer substrate. The interposer substrate includes an electrode zone and a scribe line zone. The interposer substrate is etched using the photoresist pattern as a mask to form a first opening and a second opening respectively on the electrode zone and the scribe line zone. An insulation layer and a conductive layer are formed on the first surface of the interposer substrate. A width of the second opening is smaller than a width of the first opening. The insulation layer contacts each of the first surface of the interposer substrate, an inner surface of the first opening, and an inner surface of the second opening.
Abstract:
A semiconductor device includes a substrate, a plurality of first conductive patterns disposed on the substrate and a plurality of second conductive patterns disposed on the first conductive patterns. Respective air gaps are disposed between adjacent ones of the first conductive patterns overlying a first region of the substrate, while adjacent ones of the first conductive patterns overlying a second region of the substrate do not have air gaps disposed therebetween. The air gaps may include first air gaps, and the device may further include second air gaps disposed between adjacent ones of the second conductive patterns in the second region. Adjacent ones of the second conductive patterns overlying a second region of the substrate may not have air gaps disposed therebetween.
Abstract:
According to embodiments of the inventive concept, a gate electrode is formed on a substrate, and a first spacer, a second spacer, and a third spacer are sequentially formed on a sidewall of the gate electrode. The substrate is etched to form a recess region. A compressive stress pattern is formed in the recess region. A protective spacer is formed on a sidewall of the third spacer. When the recess region is formed, a lower portion of the second spacer is removed to form a gap region between the first and third spacers. The protective spacer fills the gap region.
Abstract:
A method of treating a porous dielectric layer includes preparing a substrate on which the porous dielectric layer including an opening and pores exposed by the opening is formed, supplying a first precursor onto the substrate to form a first sub-sealing layer sealing the exposed pores, and supplying a second precursor onto the first sub-sealing layer to form a second sub-sealing layer covering the first sub-sealing layer. Each of the first and second precursors includes silicon, and a molecular weight of the second precursor is smaller than that of the first precursor.
Abstract:
A semiconductor device including source drain stressors and methods of manufacturing the same are provided. The methods may include forming a recess region in the substrate at a side of a gate pattern, and an inner surface of the recess region may include a first surface of a (100) crystal plane and a second surface of one of {111} crystal planes. The method may further include performing a first selective epitaxial growth (SEG) process to form a base epitaxial pattern on the inner surface of the recess region at a process pressure in a range of about 50 Torr to about 300 Torr. The method may also include performing a second selective epitaxial growth (SEG) process to form a bulk epitaxial pattern on the base epitaxial pattern.