Abstract:
A variable resistance memory device includes memory cells arranged on a substrate and an insulating structure between the memory cells. Each of the memory cells includes a variable resistance pattern and a switching pattern vertically stacked on the substrate. The insulating structure includes a first insulating pattern between the memory cells, and a second insulating pattern between the first insulating pattern and each of the memory cells. The first insulating pattern includes a material different from a material of the second insulating pattern.
Abstract:
A method of fabricating one or more semiconductor devices includes forming a trench in a semiconductor substrate, performing a cycling process to remove contaminants from the trench, and forming an epitaxial layer on the trench. The cycling process includes sequentially supplying a first reaction gas containing germane, hydrogen chloride and hydrogen and a second reaction gas containing hydrogen chloride and hydrogen onto the semiconductor substrate.
Abstract:
Methods of fabricating a semiconductor device are provided. The methods may include forming a gate structure on a core-peri region of a substrate. The substrate may further include a cell region. The methods may also include forming a gate spacer on a sidewall of the gate structure, forming a first impurity region adjacent the gate spacer in the core-peri region of the substrate by performing a first ion implantation process, removing the gate spacer, forming a second impurity region in the core-peri region of the substrate between the gate structure and the first impurity region by performing a second ion implantation process, forming a stress film on the gate structure, an upper surface of the first impurity region, and an upper surface of the second impurity region, and forming a recrystallization region by crystallizing the first impurity region and the second impurity region by performing an annealing process.
Abstract:
A semiconductor device including source drain stressors and methods of manufacturing the same are provided. The methods may include forming a recess region in the substrate at a side of a gate pattern, and an inner surface of the recess region may include a first surface of a (100) crystal plane and a second surface of one of {111} crystal planes. The method may further include performing a first selective epitaxial growth (SEG) process to form a base epitaxial pattern on the inner surface of the recess region at a process pressure in a range of about 50 Torr to about 300 Torr. The method may also include performing a second selective epitaxial growth (SEG) process to form a bulk epitaxial pattern on the base epitaxial pattern.
Abstract:
A method of fabricating one or more semiconductor devices includes forming a trench in a semiconductor substrate, performing a cycling process to remove contaminants from the trench, and forming an epitaxial layer on the trench. The cycling process includes sequentially supplying a first reaction gas containing germane, hydrogen chloride and hydrogen and a second reaction gas containing hydrogen chloride and hydrogen onto the semiconductor substrate.
Abstract:
A semiconductor device including source drain stressors and methods of manufacturing the same are provided. The methods may include forming a recess region in the substrate at a side of a gate pattern, and an inner surface of the recess region may include a first surface of a (100) crystal plane and a second surface of one of {111} crystal planes. The method may further include performing a first selective epitaxial growth (SEG) process to form a base epitaxial pattern on the inner surface of the recess region at a process pressure in a range of about 50 Torr to about 300 Torr. The method may also include performing a second selective epitaxial growth (SEG) process to form a bulk epitaxial pattern on the base epitaxial pattern.
Abstract:
Methods of fabricating a semiconductor device are provided. The methods may include forming a gate structure on a core-peri region of a substrate. The substrate may further include a cell region. The methods may also include forming a gate spacer on a sidewall of the gate structure, forming a first impurity region adjacent the gate spacer in the core-peri region of the substrate by performing a first ion implantation process, removing the gate spacer, forming a second impurity region in the core-peri region of the substrate between the gate structure and the first impurity region by performing a second ion implantation process, forming a stress film on the gate structure, an upper surface of the first impurity region, and an upper surface of the second impurity region, and forming a recrystallization region by crystallizing the first impurity region and the second impurity region by performing an annealing process.
Abstract:
A semiconductor device includes a gate pattern disposed on a semiconductor substrate, a bulk epitaxial pattern disposed in a recess region formed in the semiconductor substrate at a side of the gate pattern, an insert epitaxial pattern disposed on the bulk epitaxial pattern, and a capping epitaxial pattern disposed on the insert epitaxial pattern. The bulk epitaxial pattern has an upper inclined surface that is a {111} crystal plane, and the insert epitaxial pattern includes a specific element that promotes the growth rate of the insert epitaxial pattern on the upper inclined surface.
Abstract:
A semiconductor device includes a gate pattern disposed on a semiconductor substrate, a bulk epitaxial pattern disposed in a recess region formed in the semiconductor substrate at a side of the gate pattern, an insert epitaxial pattern disposed on the bulk epitaxial pattern, and a capping epitaxial pattern disposed on the insert epitaxial pattern. The bulk epitaxial pattern has an upper inclined surface that is a {111} crystal plane, and the insert epitaxial pattern includes a specific element that promotes the growth rate of the insert epitaxial pattern on the upper inclined surface.
Abstract:
A MOS transistor includes a pair of impurity regions formed in a substrate as spaced apart from each other, and a gate electrode formed on a region of the substrate located between the pair of impurity regions. Each of the impurity regions is formed of a first epitaxial layer, a second epitaxial layer on the first epitaxial layer, and a third epitaxial layer on the second epitaxial layer. The first epitaxial layer is formed of at least one first sub-epitaxial layer and a respective second sub-epitaxial layer stacked on each first sub-epitaxial layer. An impurity concentration of the first sub-epitaxial layer is less than that of the second sub-epitaxial layer.