Abstract:
A nanosheet field effect transistor design in which the threshold voltage is adjustable by adjusting the composition of the gate. The channel of the nanosheet field effect transistor may be composed of a III-V semiconductor material, and the gate, which may be separated from the channel by a high dielectric constant dielectric layer, may also be composed of a III-V semiconductor material. Adjusting the composition of the gate may result in a change in the affinity of the gate, in turn resulting in a change in the threshold voltage. In some embodiments the channel is composed, for example, of InxGa1-xAs, with x between 0.23 and 0.53, and the gate is composed of InAs1-yNy with y between 0.0 and 0.4, and the values of x and y may be adjusted to adjust the threshold voltage.
Abstract:
A nanosheet field effect transistor design in which the threshold voltage is adjustable by adjusting the composition of the gate. The channel of the nanosheet field effect transistor may be composed of a III-V semiconductor material, and the gate, which may be separated from the channel by a high dielectric constant dielectric layer, may also be composed of a III-V semiconductor material. Adjusting the composition of the gate may result in a change in the affinity of the gate, in turn resulting in a change in the threshold voltage. In some embodiments the channel is composed, for example, of InxGa1-xAs, with x between 0.23 and 0.53, and the gate is composed of InAs1-yNy with y between 0.0 and 0.4, and the values of x and y may be adjusted to adjust the threshold voltage.
Abstract:
A field effect transistor (FET) includes a nanosheet stack having first and second stacked semiconductor channel layers. The first channel layer defines a channel region of a tunnel FET, and the second channel layer defines a channel region of a thermionic FET. Source and drain regions are provided on opposite sides of the nanosheet stack such that the first and second channel layers extend therebetween. A first portion of the source region adjacent the first channel layer and a second portion of the source region adjacent the second channel layer have opposite semiconductor conductivity types. Related fabrication and operating methods are also discussed.
Abstract:
Methods of forming a semiconductor layer including germanium with low defectivity are provided. The methods may include sequentially forming a silicate glass layer, a diffusion barrier layer including nitride and an interfacial layer including oxide on a substrate. The methods may also include forming a first semiconductor layer on the interfacial layer and converting a portion of the first semiconductor layer into a second semiconductor layer having a germanium concentration therein that is higher than a germanium concentration of the first semiconductor layer.
Abstract:
An integrated circuit may include multiple first, non-Si, nanosheet field-effect transistors (FETs) and multiple second, Si, nanosheet FETs. Nanosheets of ones of the first, non-Si, nanosheet FETs may include less than about 30% Si. The first, non-Si, nanosheet FETs may define a critical speed path of the circuit of the integrated circuit. Nanosheets of ones of the second, Si, nanosheet FETs may include more than about 30% Si. The second, Si, nanosheet FETs may define a non-critical speed path of the integrated circuit. Ones of the first, non-Si, nanosheet FETs may be configured to have a higher speed than a speed of ones of the second, Si, nanosheet FETs.
Abstract:
Exemplary embodiments provide for fabricating a field effect transistor (FET) with an interface layer for a gate stack using an O3 post treatment. Aspects of the exemplary embodiments include: forming a semiconductor body upon a substrate; cleaning the surface of the semiconductor body; depositing a first dielectric layer on the semiconductor body; performing an O3 treatment that mixes with and penetrates the first dielectric layer and reacts with the semiconductor body to form a new interface layer; and performing gate stack processing, including deposition of a gate electrode.
Abstract:
A finFET device can include a high mobility semiconductor material in a fin structure that can provide a channel region for the finFET device. A source/drain recess can be adjacent to the fin structure and a graded composition epi-grown semiconductor alloy material, that includes a component of the high mobility semiconductor material, can be located in the source/drain recess.
Abstract:
Methods of fabricating quantum well field effect transistors are provided. The methods may include forming a first barrier layer including a first delta doped layer on a quantum well layer and forming a second barrier layer including a second delta doped layer selectively on a portion of the first barrier layer in a first region of the substrate. The methods may also include patterning the first and second barrier layers and the quantum well layer to form a first quantum well channel structure in the first region and patterning the first barrier layer and the quantum well layer to form a second quantum well channel structure in a second region. The methods may further include forming a gate insulating layer on the first and second quantum well channel structures of the substrate and forming a gate electrode layer on the gate insulating layer.
Abstract:
Methods of fabricating integrated circuit device with fin transistors having different threshold voltages are provided. The methods may include forming first and second semiconductor fins including first and second semiconductor materials, respectively, and covering at least one among the first and second semiconductor fins with a mask. The methods may further include depositing a compound semiconductor layer including the first and second semiconductor materials directly onto sidewalls of the first and second semiconductor fins not covered by the mask and oxidizing the compound semiconductor layer. The oxidization process oxidizes the first semiconductor material within the compound semiconductor layer while driving the second semiconductor material within the compound semiconductor layer into the sidewalls of the first and second semiconductor fins not covered by the mask.
Abstract:
A neuromorphic device for the analog computation of a linear combination of input signals, for use, for example, in an artificial neuron. The neuromorphic device provides non-volatile programming of the weights, and fast evaluation and programming, and is suitable for fabrication at high density as part of a plurality of neuromorphic devices. The neuromorphic device is implemented as a vertical stack of flash-like cells with a common control gate contact and individually contacted source-drain (SD) regions. The vertical stacking of the cells enables efficient use of layout resources.