Abstract:
A system in package (SiP) is disclosed that uses an EMI shield to inhibit EMI or other electrical interference on the components within the SiP. A metal shield may be formed on an upper surface of an encapsulant encapsulating the SiP. The metal shield may be electrically coupled to a ground layer in a printed circuit board (PCB) to form the EMI shield around the SiP. The metal shield may be electrically coupled to the ground layer using one or more conductive structures located in the encapsulant. The conductive structures may be located on a perimeter of the components in the SiP. The conductive structures may provide a substantially vertical connection between the substrate and the shield on the upper surface of the encapsulant.
Abstract:
Connectors having contact structures that may generate a low amount of EMI outside of an electronic device housing the connector structure, may further provide isolation from EMI present outside of the electronic device, and reduce the chance of a user or user's property encountering a power supply on an exposed contact.
Abstract:
The disclosed embodiments provide a system that drives a display from a computer system. The system includes a first hardware path for controlling a backlight of a display of the computer system. The system also includes a second hardware path for controlling the backlight. Finally, the system includes a backlight controller that enables use of the first and second hardware paths in controlling the backlight from the computer system.
Abstract:
A case for an electronic device can include a case body including an exterior surface and an interior surface, the interior surface being positioned opposite the exterior surface. The case can additionally include a button body positioned at least partially within the case body between the exterior surface and the interior surface, the button body being movable inward and outward relative to the case body along an axis of button travel. The case can further include a biasing structure having a contact surface configured to contact the button body, the biasing structure configured to bias the button body toward the interior surface along the axis of button travel.
Abstract:
Printed circuit boards (PCB) used to mechanically and electrically connect electrical components within an electronic device. Thin printed circuit boards (PCB) may be desirable to manufacturers and users of electronic devices. Accordingly, a process for manufacturing a printed circuit board may involve manufacturing a thin bilayer dielectric. The process may involve applying a first non-conductive layer to a metal substrate, and curing the first non-conductive layer to a C-stage resin layer that is fully cross-linked layer in a clean environment. In turn, a B-stage layer that is partially cured may be applied to the C-stage resin layer. Using a hot press, one or more metal traces may be pressed onto the B-stage layer. The B-stage resin layer may be fully cross-linked and integrated with the C-stage resin layer after lamination of the one or more metal traces and the B-stage resin layer.
Abstract:
Printed circuit boards (PCB) used to mechanically and electrically connect electrical components within an electronic device. Thin printed circuit boards (PCB) may be desirable to manufacturers and users of electronic devices. Accordingly, a process for manufacturing a printed circuit board may involve manufacturing a thin bilayer dielectric. The process may involve applying a first non-conductive layer to a metal substrate, and curing the first non-conductive layer to a C-stage resin layer that is fully cross-linked layer in a clean environment. In turn, a B-stage layer that is partially cured may be applied to the C-stage resin layer. Using a hot press, one or more metal traces may be pressed onto the B-stage layer. The B-stage resin layer may be fully cross-linked and integrated with the C-stage resin layer after lamination of the one or more metal traces and the B-stage resin layer.
Abstract:
Packages including substrate-less integrated components and methods of fabrication are described are described. In an embodiment, a packaging method includes attaching a ground structure to a carrier and a plurality of components face down to the carrier and laterally adjacent to the ground structure. The plurality of components are encapsulated within a molding compound, and the carrier is removed exposing a plurality of component terminals and a plurality of ground structure terminals. A plurality of packages are singulated.
Abstract:
Methods and systems for detecting and compensating for expansion of rechargeable batteries over time. An expansion detector may be coupled to or positioned proximate a rechargeable battery to monitor for expansion thereof. After expansion exceeding a selected threshold is detected, the expansion detector may report the expansion to an associated processing unit. The processing unit may undertake to arrest further rechargeable battery expansion by modifying or changing one or more characteristics of charging and/or discharging circuitry coupled to the rechargeable battery. For example, the processing unit may charge the rechargeable battery at a lower rate or with reduced voltage after detecting expansion.
Abstract:
Methods and systems for detecting and compensating for expansion of rechargeable batteries over time. An expansion detector may be coupled to or positioned proximate a rechargeable battery to monitor for expansion thereof. After expansion exceeding a selected threshold is detected, the expansion detector may report the expansion to an associated processing unit. The processing unit may undertake to arrest further rechargeable battery expansion by modifying or changing one or more characteristics of charging and/or discharging circuitry coupled to the rechargeable battery. For example, the processing unit may charge the rechargeable battery at a lower rate or with reduced voltage after detecting expansion.
Abstract:
Electrical components may be packaged using system-in-package configurations or other component packages. Integrated circuit dies and other electrical components may be soldered or otherwise mounted on printed circuits. A layer of encapsulant may be used to encapsulate the integrated circuits. A shielding layer may be formed on the encapsulant layer to shield the integrate circuits. The shielding layer may include a sputtered metal seed layer and an electroplated layer of magnetic material. The electroplated layer may be a magnetic material that has a high permeability such as permalloy or mu metal to provide magnetic shielding for the integrated circuits. Integrated circuits may be mounted on one or both sides of the printed circuit. A temporary carrier and sealant may be used to hold the encapsulated integrated circuits during electroplating.