Abstract:
A deflector which deflects a charged particle beam includes a substrate having an opening through which the charged particle beam should pass, and a deflection electrode which is arranged in the opening to deflect the charged particle beam and has a first conductive member and second conductive member, which are formed by plating. The second conductive member is formed on the surface of the first conductive member and is made of a material that is more difficult to oxidize than the first conductive member. The first conductive member is made of a material having smaller residual stress than the second conductive member.
Abstract:
A composition for jacketing an optical fiber including a modified PPE resin containing a polyphenylene ether resin and a thermoplastic resin compatible with the polyphenylene ether resin, and a non halogen-based flame retardant, in which a nitrogen compound is included as the non halogen-based flame retardant and the content of nitrogen element in the composition is in the range of 100000 to 300000 ppm as measured by an elementary analysis.
Abstract:
An opening is formed in resin 20 by a laser beam so that a via hole is formed. At this time, copper foil 22, the thickness of which is reduced (to 3 μm) by performing etching to lower the thermal conductivity is used as a conformal mask. Therefore, an opening 20a can be formed in the resin 20 if the number of irradiation of pulse-shape laser beam is reduced. Therefore, occurrence of undercut of the resin 20 which forms an interlayer insulating resin layer can be prevented. Thus, the reliability of the connection of the via holes can be improved.
Abstract:
A deflector which deflects a charged particle beam includes a substrate having an opening through which the charged particle beam should pass, and a deflection electrode which is arranged in the opening to deflect the charged particle beam and has a first conductive member and second conductive member which are formed by plating. The second conductive member is formed on a surface of the first conductive member and is essentially made of a material that is more difficult to oxidize than the first conductive member.
Abstract:
A printed wiring board has a circuit substrate 6 having a conductor circuit 5 and a through hole 60, and also has a joining pin 1 inserted into the through hole. The joining pin is manufactured by using a material unmelted at a heating temperature in joining the joining pin to an opposite party pad 81. The joining pin is constructed by a joining head portion 11 having a greater diameter than an opening diameter of the through hole. The joining pin forms a joining portion for joining and connection to the opposite party pad. The joining pin has a leg portion 12 having a diameter smaller than the through hole. The leg portion is inserted into the through hole and is joined to the through hole by a conductive material such as a soldering material 20, etc. In lieu of a joining pin, a joining ball approximately having a spherical shape can be joined to the through hole by the conductive material.
Abstract:
A deflector which deflects a charged particle beam includes a substrate having an opening through which the charged particle beam should pass, and a deflection electrode which is arranged in the opening to deflect the charged particle beam and has a first conductive member and second conductive member, which are formed by plating. The second conductive member is formed on the surface of the first conductive member and is made of a material that is more difficult to oxidize than the first conductive member. The first conductive member is made of a material having smaller residual stress than the second conductive member.
Abstract:
A printed wiring board has a circuit substrate 6 having a conductor circuit 5 and a through hole 60, and also has a joining pin 1 inserted into the through hole. The joining pin is manufactured by using a material unmelted at a heating temperature in joining the joining pin to an opposite party pad 81. The joining pin is constructed by a joining head portion 11 having a greater diameter than an opening diameter of the through hole. The joining pin forms a joining portion for joining and connection to the opposite party pad. The joining pin has a leg portion 12 having a diameter smaller than the through hole. The leg portion is inserted into the through hole and is joined to the through hole by a conductive material such as a soldering material 20, etc. In lieu of a joining pin, a joining ball approximately having a spherical shape can be joined to the through hole by the conductive material.
Abstract:
This invention provides a reliable blanking aperture array. An insulating layer and conductive layer are sequentially formed on the lower surface of a substrate. Then, a plurality of pairs of opposing trenches are formed in the substrate, and an insulating layer is formed on each of the side surfaces of the trenches by thermal oxidation. The conductive layer is exposed by etching the bottom of each trench. A conductive member is selectively grown in each trench using the conductive layer as a plating electrode to form a blanking electrode. An opening is formed between the opposing blanking electrodes.
Abstract:
A printed wiring board has a circuit substrate 6 having a conductor circuit 5 and a through hole 60, and also has a joining pin 1 inserted into the through hole. The joining pin is manufactured by using a material unmelted at a heating temperature in joining the joining pin to an opposite party pad 81. The joining pin is constructed by a joining head portion 11 having a greater diameter than an opening diameter of the through hole. The joining pin forms a joining portion for joining and connection to the opposite party pad. The joining pin has a leg portion 12 having a diameter smaller than the through hole. The leg portion is inserted into the through hole and is joined to the through hole by a conductive material such as a soldering material 20, etc. In lieu of a joining pin, a joining ball approximately having a spherical shape can be joined to the through hole by the conductive material.