Abstract:
Some embodiments of the present disclosure relate to a method. In this method, a semiconductor substrate, which has an active region disposed in the semiconductor substrate, is received. A shallow trench isolation (STI) structure is formed to laterally surround the active region. An upper surface of the active region bounded by the STI structure is recessed to below an upper surface of the STI structure. The recessed upper surface extends continuously between inner sidewalls of the STI structure and leaves upper portions of the inner sidewalls of the STI structure exposed. A semiconductor layer is epitaxially grown on the recessed surface of the active region between the inner sidewalls of the STI structure. A gate dielectric is formed over the epitaxially-grown semiconductor layer. A conductive gate electrode is formed over the gate dielectric.
Abstract:
Some embodiments relate to an integrated circuit (IC). The IC includes a semiconductor substrate including a flash memory region and a capacitor region. A flash memory cell is arranged over the flash memory region and includes a polysilicon select gate arranged between first and second source/drain regions of the flash memory cell. The flash memory cell also includes a control gate arranged alongside the select gate and separated from the select gate by a control gate dielectric layer. A capacitor is arranged over the capacitor region and includes: a polysilicon first capacitor plate and polysilicon second capacitor plate, which are inter-digitated with one another and separated from one another by a capacitor dielectric layer. The capacitor dielectric layer and control gate dielectric layer are made of the same material.
Abstract:
Some embodiments of the present disclosure relate to an integrated circuit (IC) arranged on a semiconductor substrate, which includes a flash region, a capacitor region, and a logic region. An upper substrate surface of the capacitor region is recessed relative to respective upper substrate surfaces of the flash and logic regions, respectively. A capacitor, which includes a polysilicon bottom electrode, a conductive top electrode arranged over the polysilicon bottom electrode, and a capacitor dielectric separating the bottom and top electrodes; is disposed over the recessed upper substrate surface of the capacitor region. A flash memory cell is disposed over the upper substrate surface of the flash region. The flash memory cell includes a select gate having a planarized upper surface that is co-planar with a planarized upper surface of the top electrode of the capacitor.
Abstract:
The present disclosure relates to a structure and method for embedding a non-volatile memory (NVM) in a high-K metal gate (HKMG) integrated circuit that utilizes a replacement gate technology with low poly resistance and high program/erase speed. A silicide layer formed over top surfaces of the NVM device, after replacement gate process of the HKMG circuit prevents poly damage during contact formation and provides low gate resistance, thereby improving program/erase speed of the NVM device.
Abstract:
The present disclosure relates to a structure and method for embedding a non-volatile memory (NVM) in a high-K metal gate (HKMG) integrated circuit that utilizes a replacement gate technology with low poly resistance and high program/erase speed. A silicide layer formed over top surfaces of the NVM device, after replacement gate process of the HKMG circuit prevents poly damage during contact formation and provides low gate resistance, thereby improving program/erase speed of the NVM device.
Abstract:
The embodiments described provide methods and semiconductor device areas for etching an active area region on a semiconductor body and epitaxially depositing a semiconductor layer overlying the active region. The methods enable the mitigation or elimination of problems encountered in subsequent manufacturing associated with STI divots.
Abstract:
A method for fabricating a semiconductor device is provided. The method includes forming a first memory cell and a second memory cell over a substrate, wherein each of the first and second memory cells comprises a bottom electrode, a resistance switching element over the bottom electrode, and a top electrode over the resistance switching element; depositing a first dielectric layer over the first and second memory cells, such that the first dielectric layer has a void between the first and second memory cells; depositing a second dielectric layer over the first dielectric layer; and forming a first conductive feature and a second conductive feature in the first and second dielectric layers and respectively connected with the top electrode of the first memory cell and the top electrode of the second memory cell.
Abstract:
In some embodiments, a method for generating a random bit is provided. The method includes generating a first random bit by providing a random number generator (RNG) signal to a magnetoresistive random-access memory (MRAM) cell. The RNG signal has a probability of about 0.5 to switch the resistive state of the MRAM cell from a first resistive state corresponding to a first data state to a second resistive state corresponding to a second data state. The first random bit is then read from the MRAM cell.
Abstract:
The present disclosure relates to an integrated chip. The integrated chip includes a memory device surrounded by a dielectric structure disposed over a substrate. The memory device includes a data storage structure disposed between a bottom electrode and a top electrode. A top electrode via couples the top electrode to an upper interconnect wire. A first line is tangent to a first outermost sidewall of the top electrode via and a second line is tangent to an opposing second outermost sidewall of the top electrode via. The first line is oriented at a first angle with respect to a horizontal plane that is parallel to an upper surface of the substrate and the second line is oriented at a second angle with respect to the horizontal plane. The second angle is less than the first angle.
Abstract:
The present disclosure relates to a method of forming an integrated chip. The method includes forming a memory device over a substrate and forming an etch stop layer over the memory device. An inter-level dielectric (ILD) layer is formed over the etch stop layer and laterally surrounding the memory device. One or more patterning process are performed to define a first trench extending from a top of the ILD layer to expose an upper surface of the etch stop layer. A removal process is performed to remove an exposed part of the etch stop layer. A conductive material is formed within the interconnect trench after performing the removal process.