Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a material layer on the substrate; forming a patterned first hard mask on the material layer; forming a patterned second hard mask on the material; utilizing the patterned first hard mask and the patterned second hard mask to remove part of the material layer for forming sacrificial mandrels; forming sidewall spacers adjacent to the sacrificial mandrels; removing the sacrificial mandrels; and using the sidewall spacers to remove part of the substrate.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a first region and a second region defined thereon; forming a plurality of fin-shaped structures on the substrate; forming a gate layer on the fin-shaped structures; forming a material layer on the gate layer; patterning the material layer for forming sacrificial mandrels on the gate layer in the first region; forming sidewall spacers adjacent to the sacrificial mandrels; removing the sacrificial mandrels; forming a patterned mask on the second region; and utilizing the patterned mask and the sidewall spacers to remove part of the gate layer.
Abstract:
A replacement gate process is disclosed. A substrate and a dummy gate structure formed on the substrate is provided, wherein the dummy gate structure comprises a dummy layer on the substrate, a hard mask layer on the dummy layer, spacers at two sides of the dummy layer and the hard mask layer, and a contact etch stop layer (CESL) covering the substrate, the spacers and the hard mask layer. The spacers and the CESL are made of the same material. Then, a top portion of the CESL is removed to expose the hard mask layer. Next, the hard mask layer is removed. Afterward, the dummy layer is removed to form a trench.
Abstract:
A semiconductor device includes a fin structure, an isolation structure, a gate structure and an epitaxial structure. The fin structure protrudes from the surface of the substrate and includes a top surface and two sidewalls. The isolation structure surrounds the fin structure. The gate structure overlays the top surface and the two sidewalls of a portion of the fin structure, and covers a portion of the isolation structure. The isolation structure under the gate structure has a first top surface and the isolation structure at two sides of the gate structure has a second top surface, wherein the first top surface is higher than the second top surface. The epitaxial layer is disposed at one side of the gate structure and is in direct contact with the fin structure.
Abstract:
An epitaxial process includes the following steps. A first gate and a second gate are formed on a substrate. Two first spacers are formed on the substrate beside the first gate and the second gate respectively. Two first epitaxial layers having first profiles are formed in the substrate beside the two first spacers respectively. A second spacer material is formed to cover the first gate and the second gate. The second spacer material covering the second gate is etched to form a second spacer on the substrate beside the second gate and expose the first epitaxial layer beside the second spacer while reserving the second spacer material covering the first gate. The exposed first epitaxial layer in the substrate beside the second spacer is replaced by a second epitaxial layer having a second profile different from the first profile.
Abstract:
A method of manufacturing a semiconductor device including the steps of providing a substrate having first type semiconductor regions and second type semiconductor regions, forming a conformal first epitaxy mask layer on the substrate, forming first type epitaxial layer in the substrate of the first type semiconductor regions, forming a conformal second epitaxy mask layer on the substrate, forming second type epitaxial layer in the substrate of the second type semiconductor regions, and removing the second epitaxy mask layer.
Abstract:
A semiconductor structure includes a gate, a dual spacer and two recesses. The gate is located on a substrate. The dual spacer is located on the substrate beside the gate. The recesses are located in the substrate and the dual spacers, wherein the sidewall of each of the recesses next to the gate has a lower tip and an upper tip, and the lower tip is located in the substrate while the upper tip is an acute angle located in the dual spacer and close to the substrate. The present invention also provides a semiconductor process formed said semiconductor structure.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a gate structure on a substrate; forming a spacer around the gate structure; and forming a buffer layer adjacent to the gate structure. Preferably, the buffer layer includes a crescent moon shape and the buffer layer includes an inner curve, an outer curve, and a planar surface connecting the inner curve and an outer curve along a top surface of the substrate, in which the planar surface directly contacts the outer curve on an outer sidewall of the spacer.
Abstract:
The present invention provides a semiconductor device, the semiconductor device includes a substrate, at least one bit line is disposed on the substrate, a rounding hard mask is disposed on the bit line, and the rounding hard mask defines a top portion and a bottom portion, and at least one storage node contact plug, located adjacent to the bit line, the storage node contact structure plug includes at least one conductive layer, from a cross-sectional view, the storage node contact plug defines a width X1 and a width X2. The width X1 is aligned with the top portion of the rounding hard mask in a horizontal direction, and the width X2 is aligned with the bottom portion of the rounding hard mask in the horizontal direction, X1 is greater than or equal to X2.
Abstract:
A method of forming a layout definition of a semiconductor device includes the following steps. Firstly, a plurality of first patterns is established to form a material layer over a substrate, with the first patterns being regularly arranged in a plurality of columns along a first direction to form an array arrangement. Next, a plurality of second patterns is established to surround the first patterns. Then, a third pattern is established to form a blocking layer on the material layer, with the third pattern being overlapped with a portion of the second patterns and with at least one of the second patterns being partially exposed from the third pattern. Finally, the first patterns are used to form a plurality of first openings in a stacked structure on the substrate to expose a portion of the substrate respectively.