Abstract:
A semiconductor device includes a semiconductor substrate, a first gate oxide layer, and a first source/drain doped region. The first gate oxide layer is disposed on the semiconductor substrate, and the first gate oxide layer includes a main portion and an edge portion having a sloping sidewall. The first source/drain doped region is disposed in the semiconductor substrate and located adjacent to the edge portion of the first gate oxide layer. The first source/drain doped region includes a first portion and a second portion. The first portion is disposed under the edge portion of the first gate oxide layer in a vertical direction, and the second portion is connected with the first portion.
Abstract:
A semiconductor device includes a semiconductor substrate, a first gate oxide layer, and a first source/drain doped region. The first gate oxide layer is disposed on the semiconductor substrate, and the first gate oxide layer includes a main portion and an edge portion having a sloping sidewall. The first source/drain doped region is disposed in the semiconductor substrate and located adjacent to the edge portion of the first gate oxide layer. The first source/drain doped region includes a first portion and a second portion. The first portion is disposed under the edge portion of the first gate oxide layer in a vertical direction, and the second portion is connected with the first portion.
Abstract:
A fin-shaped structure includes a substrate having a first fin-shaped structure located in a first area and a second fin-shaped structure located in a second area, wherein the second fin-shaped structure includes a ladder-shaped cross-sectional profile part. The present invention also provides two methods of forming this fin-shaped structure. In one case, a substrate having a first fin-shaped structure and a second fin-shaped structure is provided. A treatment process is performed to modify an external surface of the top of the second fin-shaped structure, thereby forming a modified part. A removing process is performed to remove the modified part through a high removing selectivity to the first fin-shaped structure and the second fin-shaped structure, and the modified part, thereby the second fin-shaped structure having a ladder-shaped cross-sectional profile part is formed.
Abstract:
A method of forming a layout definition of a semiconductor device includes the following steps. Firstly, a plurality of first patterns is established to form a material layer over a substrate, with the first patterns being regularly arranged in a plurality of columns along a first direction to form an array arrangement. Next, a plurality of second patterns is established to surround the first patterns. Then, a third pattern is established to form a blocking layer on the material layer, with the third pattern being overlapped with a portion of the second patterns and with at least one of the second patterns being partially exposed from the third pattern. Finally, the first patterns are used to form a plurality of first openings in a stacked structure on the substrate to expose a portion of the substrate respectively.
Abstract:
A fin-shaped structure includes a substrate having a first fin-shaped structure located in a first area and a second fin-shaped structure located in a second area, wherein the second fin-shaped structure includes a ladder-shaped cross-sectional profile part. The present invention also provides two methods of forming this fin-shaped structure. In one case, a substrate having a first fin-shaped structure and a second fin-shaped structure is provided. A treatment process is performed to modify an external surface of the top of the second fin-shaped structure, thereby forming a modified part. A removing process is performed to remove the modified part through a high removing selectivity to the first fin-shaped structure and the second fin-shaped structure, and the modified part, thereby the second fin-shaped structure having a ladder-shaped cross-sectional profile part is formed.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a first gate structure and a second gate structure on a substrate and an interlayer dielectric (ILD) layer around the first gate structure and the second gate structure; transforming the first gate structure into a first metal gate and the second gate structure into a second metal gate; removing part of the ILD layer between the first metal gate and the second metal gate to form a recess; forming a first spacer and a second spacer in the a recess; performing a first etching process to form a first contact hole; and performing a second etching process to extend the first contact hole into a second contact hole.
Abstract:
A method for fabricating semiconductor device is disclosed. First, a substrate is provided, a first gate pattern is formed on the substrate, a first spacer is formed around the first gate pattern, part of the first gate pattern is removed to form a first slot, a first dielectric layer is formed into the first slot, and a replacement metal gate (RMG) process is performed to transform part of the first gate pattern into a metal gate.
Abstract:
A method of fabricating a semiconductor with self-aligned spacer includes providing a substrate. At least two gate structures are disposed on the substrate. The substrate between two gate structures is exposed. A silicon oxide layer is formed to cover the exposed substrate. A nitride-containing material layer covers each gate structure and silicon oxide layer. Later, the nitride-containing material layer is etched to form a first self-aligned spacer on a sidewall of each gate structure and part of the silicon oxide layer is exposed, wherein the sidewalls are opposed to each other. Then, the exposed silicon oxide layer is removed to form a second self-aligned spacer. The first self-aligned spacer and the second self-aligned spacer cooperatively define a recess on the substrate. Finally, a contact plug is formed in the recess.
Abstract:
A method of forming a semiconductor structure includes following steps. First of all, a patterned hard mask layer having a plurality of mandrel patterns is provided. Next, a plurality of first mandrels is formed on a substrate through the patterned hard mask. Following these, at least one sidewall image transferring (SIT) process is performed. Finally, a plurality of fins is formed in the substrate, wherein each of the fins has a predetermined critical dimension (CD), and each of the mandrel patterns has a CD being 5-8 times greater than the predetermined CD.
Abstract:
The present invention provides a method for forming a semiconductor device having a metal gate. The method includes firstly, a substrate is provided, and a first semiconductor device and a second semiconductor device are formed on the substrate, having a first gate trench and a second trench respectively. Next, a bottom barrier layer is formed in the first gate trench and a second trench. Afterwards, a first pull back step is performed, to remove parts of the bottom barrier layer, and a first work function metal layer is then formed in the first gate trench. Next, a second pull back step is performed, to remove parts of the first work function metal layer, wherein the topmost portion of the first work function metal layer is lower than the openings of the first gate trench and the second gate trench.