Abstract:
A lanthanum compound, a method of synthesizing a thin film, and a method of manufacturing an integrated circuit device, the compound being represented by Formula 1 below, wherein, in Formula 1, R1 is a hydrogen atom or a C1-C4 linear or branched alkyl group, R2 and R3 are each independently a hydrogen atom or a C1-C5 linear or branched alkyl group, at least one of R2 and R3 being a C3-C5 branched alkyl group, and R4 is a hydrogen atom or a C1-C4 linear or branched alkyl group.
Abstract:
An integrated circuit device includes a lower electrode, an upper electrode, and a dielectric layer structure between the lower electrode and the upper electrode, the dielectric layer structure including a first surface facing the lower electrode and a second surface facing the upper electrode. The dielectric layer structure includes a first dielectric layer including a first dielectric material and a plurality of grains extending from the first surface to the second surface and a second dielectric layer including a second dielectric material and surrounding a portion of a sidewall of each of the plurality of grains of the first dielectric layer in a level lower than the second surface. The second dielectric material includes a material having bandgap energy which is higher than bandgap energy of the first dielectric material.
Abstract:
A tantalum compound, a method of forming a thin film, and a method of fabricating an integrated circuit device, the tantalum compound being represented by the following General Formula (I):
Abstract:
A method of forming a thin film includes forming a niobium-containing film on a substrate by using a niobium precursor composition and a reactant, the niobium precursor composition including a niobium compound represented by Formula (1): Nb(R5Cp)2(L) Formula (1) (where each R is independently H, a C1 to C6 alkyl group, or R13Si, with each R1 being independently H or a C1 to C6 alkyl group, Cp is a cyclopentadienyl group, and L is a formamidinate, an amidinate, or a guanidinate.
Abstract:
A method of forming a thin film including vaporizing a nickel compound on a substrate using a heterostructured nickel compound including a nickel amidinate ligand and an aliphatic alkoxy group and providing a vapor containing the vaporized nickel compound onto the substrate, thereby forming a nickel-containing layer. Vaporizing the nickel compound on the substrate is performed in an atmosphere in which at least one selected from plasma, heat, light, and voltage is applied.
Abstract:
Provided are a heterostructured nickel compound including a nickel amidinate ligand and an aliphatic alkoxy group and a method of forming a thin film including the heterostructured nickel compound. The method includes forming a nickel-containing layer on a substrate by using the heterostructured nickel compound including the nickel amidinate ligand and the aliphatic alkoxy group.
Abstract:
A tantalum compound, a method of forming a thin film, and a method of fabricating an integrated circuit device, the tantalum compound being represented by the following General Formula (I):
Abstract:
A method of forming a semiconductor device includes forming an etching layer on a substrate, forming a photoresist layer on the etching layer, forming an exposed area configured to define an unexposed area in the photoresist layer, forming a hardmask layer on the exposed area using a selective deposition process, partially removing the photoresist layer using the hardmask layer as an etch mask and forming a photoresist pattern, and etching the etching layer using the photoresist pattern as an etch mask and forming a fine pattern.
Abstract:
Provided are an aluminum compound represented by General Formula (I), a method of forming a thin film, and a method of fabricating an integrated circuit device.