Abstract:
A lanthanum compound, a method of synthesizing a thin film, and a method of manufacturing an integrated circuit device, the compound being represented by Formula 1 below, wherein, in Formula 1, R1 is a hydrogen atom or a C1-C4 linear or branched alkyl group, R2 and R3 are each independently a hydrogen atom or a C1-C5 linear or branched alkyl group, at least one of R2 and R3 being a C3-C5 branched alkyl group, and R4 is a hydrogen atom or a C1-C4 linear or branched alkyl group.
Abstract:
Provided are an aluminum compound represented by General Formula (I), a method of forming a thin film, and a method of fabricating an integrated circuit device.
Abstract:
Provided are a heterostructured nickel compound including a nickel amidinate ligand and an aliphatic alkoxy group and a method of forming a thin film including the heterostructured nickel compound. The method includes forming a nickel-containing layer on a substrate by using the heterostructured nickel compound including the nickel amidinate ligand and the aliphatic alkoxy group.
Abstract:
A method of manufacturing a semiconductor device is provided. A substrate including a structure in which a hole is formed is prepared. Precursors including a nickel alkoxide compound are vaporized. A nickel-containing layer is formed in the hole by providing the vaporized precursors including the nickel alkoxide compound onto the substrate.
Abstract:
A method of manufacturing a semiconductor device, the method including providing a metal precursor on a substrate to form a preliminary layer that includes a first metal; providing a reducing agent on the preliminary layer, the reducing agent including a compound that includes a second metal; and providing a reactant on the preliminary layer to form a metal-containing layer, wherein the second metal has multiple oxidation states, the second metal in the reducing agent having a lower oxidation state among the multiple oxidation states prior to providing the reducing agent on the preliminary layer.
Abstract:
A method of forming a thin film includes forming a niobium-containing film on a substrate by using a niobium precursor composition and a reactant, the niobium precursor composition including a niobium compound represented by Formula (1): Nb(R5Cp)2(L) Formula (1) (where each R is independently H, a C1 to C6 alkyl group, or R13Si, with each R1 being independently H or a C1 to C6 alkyl group, Cp is a cyclopentadienyl group, and L is a formamidinate, an amidinate, or a guanidinate.
Abstract:
A method of forming a thin film including vaporizing a nickel compound on a substrate using a heterostructured nickel compound including a nickel amidinate ligand and an aliphatic alkoxy group and providing a vapor containing the vaporized nickel compound onto the substrate, thereby forming a nickel-containing layer. Vaporizing the nickel compound on the substrate is performed in an atmosphere in which at least one selected from plasma, heat, light, and voltage is applied.
Abstract:
Provided are a heterostructured nickel compound including a nickel amidinate ligand and an aliphatic alkoxy group and a method of forming a thin film including the heterostructured nickel compound. The method includes forming a nickel-containing layer on a substrate by using the heterostructured nickel compound including the nickel amidinate ligand and the aliphatic alkoxy group.
Abstract:
A silicon-containing intermediate is synthesized by reacting a lanthanum tris[bis(trialkylsilyl)amide] complex with an alkylcyclopentadiene. A lanthanum compound is synthesized by reacting the silicon-containing intermediate with a dialkylamidine-based compound.