Abstract:
A method of selecting a Subscriber Identity Module (SIM) in a portable terminal on which multiple SIMs are capable of being mounted, includes determining whether an application/service that is currently being executed is an application or a service for which security is previously set, selecting a SIM that is previously set for security use or a SIM that is set for general use, according to a result of the determination, and performing communication.
Abstract:
A memory module includes a command/address (CA) register, memory devices, and a module resistor unit mounted on a circuit board. The centrally disposed CA register drive the memory devices one or more internal CA signal(s) to arrangements of memory devices using multiple CA transmission lines, wherein the multiple internal CA transmission lines are commonly terminated in the module resistor unit.
Abstract:
A memory module includes a circuit board, a plurality of memory devices, and a power management integrated circuit (PMIC). The circuit board includes first connectors, a second connector, and a third connector connected to an external device. The plurality of memory devices are mounted on the circuit board, and connected to the first connectors. The PMIC receives a first voltage through the second connector, generates a second voltage using the first voltage, and provides the second voltage to the plurality of memory devices The PMIC adjusts the second voltage based on a signal received through the third connector such that a voltage difference of the first voltage and the second voltage is reduced in a training mode of the memory module.
Abstract:
A memory module is provided which includes a printed circuit board; first semiconductor packages provided on one surface of the printed circuit board; and second semiconductor packages provided on the other surface of the printed circuit board, the first semiconductor packages and the second semiconductor packages having semiconductor dies that form ranks. A number of the ranks formed by the first semiconductor packages being different from a number of the ranks formed by the second semiconductor packages. Semiconductor packages forming a same one of the ranks receive a chip selection signal in common and semiconductor packages forming other ranks receive a different chip selection signal.
Abstract:
A method of selecting a Subscriber Identity Module (SIM) in a portable terminal on which multiple SIMs are capable of being mounted, includes determining whether an application/service that is currently being executed is an application or a service for which security is previously set, selecting a SIM that is previously set for security use or a SIM that is set for general use, according to a result of the determination, and performing communication.
Abstract:
A printed circuit board includes a first electrically conductive reference plane configured to distribute a first reference voltage applied thereto across a surface area of the first reference plane, and a second electrically conductive reference plane extending parallel to the first reference plane, and configured to distribute a second reference voltage applied thereto across a surface area of the second reference plane. A first layer is provided, which extends between the first reference plane and the second reference plane, and includes one or more first signal lines extending adjacent the first reference plane. The first layer is divided into: (i) a first region in which the one or more first signal lines are disposed, (ii) a second region containing an additional plane that is configured to receive a third voltage and has smaller surface area relative to the surface areas of the first and second reference planes, and (iii) a third region containing a dielectric layer. A second layer is provided, which extends between the first reference plane and the second reference plane, and includes one or more second signal lines extending adjacent the second reference plane. The second signal lines have linewidths that vary as a function of whether they are vertically aligned with the first region, the second region, or the third region.
Abstract:
A printed circuit board includes a first electrically conductive reference plane configured to distribute a first reference voltage applied thereto across a surface area of the first reference plane, and a second electrically conductive reference plane extending parallel to the first reference plane, and configured to distribute a second reference voltage applied thereto across a surface area of the second reference plane. A first layer is provided, which extends between the first reference plane and the second reference plane, and includes one or more first signal lines extending adjacent the first reference plane. The first layer is divided into: (i) a first region in which the one or more first signal lines are disposed, (ii) a second region containing an additional plane that is configured to receive a third voltage and has smaller surface area relative to the surface areas of the first and second reference planes, and (iii) a third region containing a dielectric layer. A second layer is provided, which extends between the first reference plane and the second reference plane, and includes one or more second signal lines extending adjacent the second reference plane. The second signal lines have linewidths that vary as a function of whether they are vertically aligned with the first region, the second region, or the third region.
Abstract:
A memory module includes semiconductor memory devices, a power management integrated circuit (PMIC), and a control device. The semiconductor memory devices, mounted on a circuit board, operate based on a power supply voltage. The PMIC, mounted on the circuit board, generates the power supply voltage, provides the power supply voltage to the semiconductor memory devices, and stores a trimming control code associated with a minimum level of the power supply voltage when the semiconductor memory devices operate normally in a test mode. During the test mode, the PMIC adjusts a level of the power supply voltage, tests the semiconductor memory devices using the adjusted power supply voltage, and stores the trimming control code based on a result of the test. The control device controls the PMIC based on a first control signal received from an external device.
Abstract:
A memory module includes semiconductor memory devices, a power management integrated circuit (PMIC), and a control device. The semiconductor memory devices, mounted on a circuit board, operate based on a power supply voltage. The PMIC, mounted on the circuit board, generates the power supply voltage, provides the power supply voltage to the semiconductor memory devices, and stores a trimming control code associated with a minimum level of the power supply voltage when the semiconductor memory devices operate normally in a test mode. During the test mode, the PMIC adjusts a level of the power supply voltage, tests the semiconductor memory devices using the adjusted power supply voltage, and stores the trimming control code based on a result of the test. The control device controls the PMIC based on a first control signal received from an external device.
Abstract:
An antenna device attains good antenna performance using at least one or more metal members installed in a portable terminal. The antenna device includes a main board equipped with a power supply part for supplying power, a slot part which is positioned in at least one or more metal members or is formed by a combination of the metal members, and a power supply antenna member for receiving power from the power supply part and which is electromagnetically coupled with the slot part.