-
公开(公告)号:CN104260889A
公开(公告)日:2015-01-07
申请号:CN201410438725.9
申请日:2014-08-29
Applicant: 中国运载火箭技术研究院
Abstract: 一种直升机低速投放飞行器的挂架及飞行器姿态控制方法,挂架包括:主钢索,挂架钢索,阻尼板,挂架主结构,稳定伞,压紧组件和分离释放组件;主钢索一端连接直升机,另一端通过挂架钢索连接挂架主结构;阻尼板用于减小挂架左右摆动;稳定伞用于消除挂架前后摆动和绕主钢索转动;压紧组件包括压紧开关和可调压脚,用于分离信号检测;飞行器通过分离释放组件挂在挂架主结构下方。姿态控制方法步骤为:飞行器基于压紧开关组成的可靠分离信号检测电路进行分离信号检测;分离前飞行器纵向和航向通道开环控制,横向通道滚转角闭环控制;分离后飞行器纵向通道俯仰角和法向加速度闭环控制,横向通道滚转角闭环控制,航向通道侧向加速度闭环控制。
-
公开(公告)号:CN112364432B
公开(公告)日:2023-12-12
申请号:CN202011126054.4
申请日:2020-10-20
Applicant: 中国运载火箭技术研究院
IPC: G06F30/15 , G06F30/28 , G06F119/14 , G06F111/08 , G06F113/08
Abstract: 本发明提出了一种载机挂飞投放分离过程控制方法,首先获取飞行器总体参数和投放分离参数作为设计数据,计算保持分离姿态稳定所需要的控制舵偏角度、起控时间初值,计算确定分离过程姿态角指令值,然后通过分离动态轨迹仿真计算对控制舵偏角度、起控时间初值进行校验后,即可按照经典控制方法设计姿态角控制律,形成投放分离控制方案,最后通过蒙特卡洛仿真对方案有效性进行检验。本发明与现有技术相比的优点在于在分离控制设计中,针对现有面对称性飞行器分离过程载机气动干扰,增加了初始舵面偏角,有效解决了带有翼面的飞行器投放分离安全问题,同时在分离过程增加了最快分离姿态角指令,大大减小了与载机碰撞的风险,提高投放分离安全性。
-
公开(公告)号:CN115758678A
公开(公告)日:2023-03-07
申请号:CN202211338433.9
申请日:2022-10-28
Applicant: 中国运载火箭技术研究院
IPC: G06F30/20 , G06F111/04
Abstract: 本发明涉及一种航天器敏感器顺逆光工作弧段确定方法,将分析航天器敏感器顺逆光的问题转换为基于约束的航天器天线与观测星座的可见性问题,通过将敏感器的工作条件转换为航天器天线的约束,从而利用轨道工具箱的可见性分析工具,快速获得满足要求的工作弧段。本发明采用系统工具箱STK进行航天器轨道和姿态、航天器敏感器建模,建立航天器敏感器光轴垂面与太阳矢量的夹角关系,设置敏感器顺逆光对应的约束参数,利用Access分析工具完成满足任务要求的敏感器顺逆光工作弧段,并输出分析报告,为航天器在轨任务分析与试验流程设计提供支撑。
-
公开(公告)号:CN114167885A
公开(公告)日:2022-03-11
申请号:CN202111271951.9
申请日:2021-10-29
Applicant: 中国运载火箭技术研究院
IPC: G05D1/10
Abstract: 本发明提出了一种升力式飞行器多模式解析制导方法,对关注终端高度和速度的控制精度、不关注中间过程约束的飞行任务,运用速度‑高度控制模式进行解析制导;对既关注终端高度和速度的控制精度、又关注中间过程约束的飞行任务,运用阶梯高度控制模式进行解析制导;对关注终端高度和侧向控制的控制精度、不关注速度控制的飞行任务,运用高度‑侧向控制进行解析制导。本发明可摆脱对参考轨迹和攻角剖面的依赖,计算量很小,降低对器上计算机的要求,可快速生成制导指令,根据不同的任务需求,可实现对终端高度、终端速度、侧向参数的高精度控制。
-
公开(公告)号:CN105066994B
公开(公告)日:2017-11-28
申请号:CN201510520136.X
申请日:2015-08-21
Applicant: 中国运载火箭技术研究院
Abstract: 一种嵌入式大气数据系统与惯性导航系统的数据融合方法,步骤为:(1)采集惯性导航系统输出的导航信息;(2)根据导航信息基于选定的大气模型计算大气温度、静压、密度和声速;(3)根据导航信息及大气温度、静压、密度和声速计算真空速、马赫数、动压、攻角和侧滑角;(4)根据当前时刻惯性导航系统大气数据解算结果以及上一时刻大气数据融合处理结果选择解算初值;(5)根据解算初值以及飞行器测压孔处的表面压力值解算马赫数、攻角、侧滑角、静压和动压;(6)对惯性导航系统大气数据解算结果和嵌入式大气数据系统解算结果进行融合处理。本发明可以解决嵌入式大气数据系统所存在的共性问题,提高大气数据测量性能。
-
公开(公告)号:CN106484957A
公开(公告)日:2017-03-08
申请号:CN201610829230.8
申请日:2016-09-18
Applicant: 中国运载火箭技术研究院
IPC: G06F17/50
CPC classification number: Y02T90/50 , G06F17/5009 , G06F2217/06 , G06F2217/78
Abstract: 一种重复使用运载器再入飞行制导控制性能评估系统,建模分析模块针对重复使用运载器进行建模,根据预设的任务需求,进行制导、控制性能分析,得到性能分析结果输入至评估架构构建模块;指标体系构建模块根据重复使用运载器的任务需求、飞行器对象的动力学特点,明确制导、控制性能指标体系;性能评估方法库中存储层次分析法、蒙特卡洛方法、u分析方法、非参数估计方法;评估架构构建模块根据制导、控制性能指标体系从性能分析结果中获取相应指标,根据性能指标特点及飞行任务各阶段的制导控制律,从性能评估方法库选取对应的方法确定不同性能指标的评估结果,并将所有评估结果按照飞行阶段以及各飞行阶段各指标赋权值后相加得到最终的评估结果。
-
公开(公告)号:CN104260889B
公开(公告)日:2016-08-24
申请号:CN201410438725.9
申请日:2014-08-29
Applicant: 中国运载火箭技术研究院
Abstract: 一种直升机低速投放飞行器的挂架及飞行器姿态控制方法,挂架包括:主钢索,挂架钢索,阻尼板,挂架主结构,稳定伞,压紧组件和分离释放组件;主钢索一端连接直升机,另一端通过挂架钢索连接挂架主结构;阻尼板用于减小挂架左右摆动;稳定伞用于消除挂架前后摆动和绕主钢索转动;压紧组件包括压紧开关和可调压脚,用于分离信号检测;飞行器通过分离释放组件挂在挂架主结构下方。姿态控制方法步骤为:飞行器基于压紧开关组成的可靠分离信号检测电路进行分离信号检测;分离前飞行器纵向和航向通道开环控制,横向通道滚转角闭环控制;分离后飞行器纵向通道俯仰角和法向加速度闭环控制,横向通道滚转角闭环控制,航向通道侧向加速度闭环控制。
-
公开(公告)号:CN114167885B
公开(公告)日:2023-08-29
申请号:CN202111271951.9
申请日:2021-10-29
Applicant: 中国运载火箭技术研究院
IPC: G05D1/10
Abstract: 本发明提出了一种升力式飞行器多模式解析制导方法,对关注终端高度和速度的控制精度、不关注中间过程约束的飞行任务,运用速度‑高度控制模式进行解析制导;对既关注终端高度和速度的控制精度、又关注中间过程约束的飞行任务,运用阶梯高度控制模式进行解析制导;对关注终端高度和侧向控制的控制精度、不关注速度控制的飞行任务,运用高度‑侧向控制进行解析制导。本发明可摆脱对参考轨迹和攻角剖面的依赖,计算量很小,降低对器上计算机的要求,可快速生成制导指令,根据不同的任务需求,可实现对终端高度、终端速度、侧向参数的高精度控制。
-
公开(公告)号:CN115455562A
公开(公告)日:2022-12-09
申请号:CN202211057327.3
申请日:2022-08-31
Applicant: 中国运载火箭技术研究院
Inventor: 张家雄 , 张华山 , 陈雅曦 , 周正阳 , 韩金鹏 , 杜志博 , 黄晓晨 , 陈尚 , 李昊 , 穆星科 , 杜刚 , 王彬 , 谭珏 , 周晓丽 , 张月玲 , 韩旭 , 曹晓瑞 , 杨勇 , 朱永贵 , 罗臻
IPC: G06F30/15 , G06F30/20 , G06F30/23 , G06F119/10 , G06F119/14 , G06F113/28 , G06F113/24
Abstract: 一种空天飞行器微振动试验条件获取方法,搜寻飞行器在轨工作过程中的微振动扰源;对微振动扰源进行分类,确定无法避开的扰源;开展无法避开的扰源的微振动环境测量试验,获取扰源的最大振动环境时域曲线;建立微振动响应分析有限元模型;开展瞬态响应分析,确定精密仪器的微振动响应;将精密仪器的微振动响应时域曲线转化为频域曲线,并进行包络设计,得到精密仪器的微振动试验条件,用于后续试验验证。
-
公开(公告)号:CN112455720B
公开(公告)日:2022-04-22
申请号:CN202011382064.4
申请日:2020-11-30
Applicant: 中国运载火箭技术研究院
Abstract: 本发明一种空天飞行器气动力辅助变轨设计方法,首先根据空天飞行器气动力辅助变轨任务特点,将气动力辅助变轨划分为离轨段、大气层内气动力辅助变轨段、升轨段三个阶段;然后,根据飞行器气动力辅助变轨各阶段设计特点,建立气动力辅助变轨运动模型及约束条件模型;最后,根据所述气动力辅助变轨运动模型设计各阶段变轨轨道控制设计方法,设计算例、开展空天飞行器气动力辅助变轨仿真分析,并验证了设计方法有效性。
-
-
-
-
-
-
-
-
-