US10887639B2

The present disclosure describes a video data processing method and a device. An example method includes: determining, by a network device, a video bitrate, a volume of scheduled video data, and video-played duration of a video service of a terminal; determining, by the network device, a buffer time of the video service of the terminal based on the video bitrate, the volume of scheduled video data, and the video-played duration; and performing, by the network device, video data scheduling on the terminal based on the buffer time.
US10887634B2

A video resource file acquisition method includes: acquiring, by a terminal, a resource decryption key of a target video from a key management server; transmitting, by the terminal, a resource download request for the target video to a resource server of the target video; after receiving the resource download request for the target video, acquiring, by the resource server, a resource encryption key of the target video from the key management server; encrypting, by the resource server, a resource file of the target video by using the resource encryption key and feeding back, by the resource server, the encrypted resource file to the terminal; and after receiving the encrypted resource file, decrypting, by the terminal, the encrypted resource file using the resource decryption key.
US10887628B1

Systems and methods include handling media data based on triggers. Media data includes livestream audiovisual data. Media data or portions thereof are categorized to assist with defining or executing triggers.
US10887626B2

The present invention avoids waste caused by performing both a Secondary Transform and an Adaptive Multiple Core Transform. Provided is a device including: a core transform unit (1521) that can perform an Adaptive Multiple Core Transform on a Coding Tree Unit; and a Secondary Transform unit (1522) that can perform, before the Adaptive Multiple Core Transform, a Secondary Transform on at least any one of sub-blocks included in the Coding Tree Unit. The device omits any of the Adaptive Multiple Core Transform and the Secondary Transform in accordance with at least any of a flag associated with the Adaptive Multiple Core Transform and a flag associated with the Secondary Transform, or in accordance with a size of the Coding Tree Unit.
US10887623B2

According to the invention, there are provided sets of contexts specifically adapted to encode special coefficients of a prediction error matrix, on the basis of previously encoded values of level k. Furthermore, the number of values of levels other than 0 is explicitly encoded and numbers of appropriate contexts are selected on the basis of the number of spectral coefficients other than 0.
US10887618B2

The present invention provides a video picture coding method, a video picture decoding method, a coding device, and a decoding device. The method includes: determining a motion vector difference of an affine picture block; determining motion vector precision of the affine picture block; determining a size of an affine motion compensation picture subblock in the affine picture block according to the motion vector difference, the motion vector precision, and a distance between control points in the affine picture block, where the control points are pixels used to determine the motion vector difference; and performing coding processing on the affine picture block according to the size of the affine motion compensation picture subblock. In this way, a picture subblock of an appropriate size is selected, so that coding complexity can be reduced, and coding efficiency can be improved.
US10887613B2

A method for enhancing one or more sections of lower-quality visual data using a hierarchical algorithm, the method comprising receiving one or more sections of lower-quality visual data. The one or more sections of lower-quality visual data are enhanced to one or more sections of higher-quality visual data using the hierarchical algorithm. Additionally, at least the first step of the hierarchical algorithm is performed in a lower-quality domain; and wherein the hierarchical algorithm operates in both a higher-quality domain and the lower-quality domain.
US10887606B2

An image decoding method of decoding, on a block-by-block basis, image data included in a coded stream includes: deriving candidates for an intra prediction mode to be used for intra prediction for a decoding target block, the number of the candidates constantly being a plural number; obtaining, from the coded stream, an index for identifying one of the derived candidates for the intra prediction mode; and determining, based on the obtained index, one of the derived candidates for the intra prediction mode as the intra prediction mode to be used for intra prediction for the decoding target block.
US10887589B2

A block processing procedure to determine coding-block or transform-block sizes for encoded and decoding video data. An encoder obtains unencoded video data and selects a region-of-interest in the video data. Image characteristics of the video data are determined from the region-of-interest and a block size is determined from those image characteristics. The video data is encoded using the block size without storing the block size in a header associated with the encoded data. A decoder obtains the encoded data and selects a second region-of-interest in the encoded data that corresponds to the unencoded data region-of-interest. Second image characteristics are determined from the second region-of-interest, where the second characteristics are the same as the characteristics determined for the unencoded data. A block size is determined from the second image characteristics without using a header associated with the encoded data. The encoded data is decoded based on the determined block size.
US10887583B2

A camera system includes: a first camera and a second camera; a camera adaptor box; and a camera control unit.
US10887576B2

A method for reducing the parameters defining an acquired light field ray which enables only the colour associated with the light field ray to be stored instead of 4 light field co-ordinates (x,y,i,j) and its associated colour.
US10887574B2

Embodiments are generally directed to selective packing of patches for immersive video. An embodiment of a processing system includes one or more processor cores; and a memory to store data for immersive video, the data including a plurality of patches for multiple projection directions. The system is select the patches for packing, the selection of the patches based at least in part on which of the multiple projection directions is associated with each of the patches. The system is to encode the patches into one or more coded pictures according to the selection of the patches.
US10887573B1

Described here are systems, devices, and method for converting a two-dimensional video sequence into first and second video sequences for display at first and second display areas of a single display. In some embodiments, a two-dimensional video image sequence is received at a mobile device or wearable headset device. The two-dimensional video image sequence may be split into first and second video image sequences such that a first video image sequence is output to the first display area and a second video image sequence different from the first video image sequence is output to the second display area. The first and second video image sequences may be created from the two-dimensional video image sequence.
US10887572B2

A suggested viewport indication is generated and sent for use in a panoramic video. In one example, a method includes receiving encoded video including viewport metadata, decoding the video, extracting the viewport metadata, generating a viewport of the decoded video based on the viewport metadata, and buffering the generated viewport for display.
US10887570B2

Multiple punchouts of a video may be presented based on multiple viewing windows. The video may include visual content having a field of view. Multiple viewing windows may be determined for the video, with individual viewing window defining a set of extents of the visual content. Different punchouts of the visual content may be presented based on the different viewing windows. Individual punchout of the visual content may include the set of extents of the visual content defined by corresponding viewing window.
US10887569B2

Disclosed is a virtual viewpoint synthesis method based on image local segmentation, which relates to the digital image processing technology. By mapping the input left and right images to the virtual viewpoints so as to be fused to obtain a synthesized image, smoothing and denoising the rough and noisy depth maps based on the object segmentation information of the scene, the method as disclosed solves the occlusion issue through local area segmentation during the process of viewpoint synthesis, which may guarantee that the subjective quality of viewpoint synthesis will not be significantly deteriorated when the depth map has a relatively large flaw, and maintain geometric information of the scene to the utmost extent so as to generate a real immersive sense, thereby ameliorating the drawback of significant deterioration of synthesis quality in conventional methods when the depth information of the scene has errors and noises, and offering a relatively strong robustness to the errors in the depth map information of the scene. The disclosed method may be applied to a video surveillance system and image processing software, etc.
US10887562B2

A camera system for the exterior region of a building, comprising a camera for producing image data of surroundings of the camera system, comprising a motion detector to detect a movement of an object in the surroundings of the camera system, contains an evaluation module configured to detect a movement of an object in the surroundings of the camera system on the basis of a program-technical motion detection in the image data.
US10887554B2

Provided is a mobile terminal including a plurality of cameras having different FOVs, the mobile terminal including: a display for displaying a preview sensed by an activated camera among the plurality of cameras; and a controller configured to control the plurality of cameras and the display, wherein the controller is configured for: controlling the display to output multi-previews of the plurality of cameras in response to a first signal indicating outputting the multi-previews of the plurality of cameras; when a camera of a field of view (FOV) smaller than a FOV of an activated camera among the plurality of cameras is deactivated, cropping a preview sensed by the activated camera and generating a preview of the deactivated camera using the cropped preview.
US10887549B1

A system may send content to be shared in an online meeting between a plurality of computing devices to each of the plurality of computing devices. The system may receive, from a computing device associated with a presenter role in the online meeting from the plurality of computing devices, indications of interactions with the content. The system may, in response to receiving the indications of the interactions, send one or more commands to each of the plurality of computing devices other than the computing device to synchronize presentation of the content at each of the plurality of computing devices other than the computing device according to the interactions with the content by the computing device.
US10887546B2

A display apparatus includes a communication interface configured to communicate with another display apparatus, a display configured to display contents being shared with the other display apparatus and a video call user interface (UI) for a video call with a user of the other display apparatus, and a processor, in response to at least one of a gesture and a voice of the user included in video call data received from the other display apparatus satisfying a predetermined condition, configured to control the display to change a size of the video call UI displayed on the display.
US10887542B1

Aspects of the present disclosure involve a system comprising a computer-readable storage medium storing at least one program and a method for receiving, by one or more processors, a video comprising one or more shots in a first aspect ratio; detecting a first shot of the one or more shots, the first shot comprising a sequence of frames; and identifying an object that appears throughout a continuous portion of frames of the sequence of frames in the first shot. A visual presentation of the object in the first shot is automatically modified and a modified video comprising the one or more shots in a second aspect ratio is generated based on the automatically modified visual presentation of the object in the first shot.
US10887531B2

Systems and methods are described for replacing a background portion of an image. An illustrative method includes receiving a first image, identifying a background portion of the first image and a subject portion of the first image, retrieving metadata associated with the first image, determining, based on the metadata, a geographic location where the first image was captured, retrieving a plurality of other images captured at the geographic location, selecting a second image from the plurality of other images, wherein the second image is associated with metadata indicating that the second image was captured during a predetermined time period, and generating for display a third image comprising the subject portion of the first image placed over the second image.
US10887530B2

To prevent deterioration in image quality in mixing a visible light signal and an infrared light signal to generate a color image signal. A signal processing device includes a mixture ratio creator and a mixer. The mixture ratio creator is configured to create a mixture ratio that is a ratio in mixing a low frequency visible light signal that is a low frequency component of a visible light signal and a low frequency invisible light signal that is a low frequency component of an invisible light signal together on a basis of the low frequency visible light signal and the low frequency invisible light signal. The mixer is configured to mix the low frequency visible light signal and the low frequency invisible light signal together on a basis of the mixture ratio to generate a mixed signal.
US10887528B2

The method includes obtaining, using a face camera of a smart phone, identification information from a ceiling light of a facility with visible light communication, and obtaining location information of the ceiling light related to the identification information. The method also includes displaying a location related to the location information of the ceiling light on a map of the facility on a display of the smart phone. The smart phone is set on a cart in a state that the face camera is directed to a ceiling of the facility on which the ceiling light is attached, and the face camera is a CMOS sensor and the CMOS sensor is used only for the visible light communication.
US10887525B2

An electronic apparatus, method, and non-transitory computer-readable medium are provided for delivery of notifications for feedback over visual quality of images. The electronic apparatus determines, from a plurality of categories, a category of the image frame based on imaging information associated with the image frame or an object of interest. The electronic apparatus selects a set of scoring parameters for the image frame from a plurality of scoring parameters based on the determined category. The set of scoring parameters corresponds to a defined visual quality for the determined category. The electronic apparatus estimates score information for the set of scoring parameters based on deviation of a value of at least one scoring parameter of the selected set of scoring parameters from a set of threshold values. The electronic apparatus outputs a notification based on the score information. The notification corresponds to feedback on a visual quality of the image frame.
US10887520B2

A distance measurement device includes an imaging optical system, an imaging unit, an emission unit, a derivation unit which performs a distance measurement to derive a distance to a subject based on a timing at which directional light is emitted by the emission unit and a timing at which reflected light is received by a light receiving unit, a shake correction unit which performs shake correction as correction of shake of the subject image caused by variation of an optical axis of the imaging optical system, and a control unit which performs control such that the shake correction unit does not perform shake correction or performs shake correction with a correction amount smaller than a normal correction amount determined in advance in a case of performing the distance measurement and performs shake correction with the normal correction amount in a case of not performing the distance measurement.
US10887512B2

A camera system includes: a first imaging element; a second imaging element different from the first imaging element; an oscillator for supplying a clock signal to the first imaging element and the second imaging element; and a controller that controls an operation of the first imaging element and an operation of the second imaging element, and acquires image signals outputted by the first imaging element and the second imaging element. The controller synchronizes and outputs image data of a first region, which is a part of an effective pixel region of the first imaging element, and image data of a second region, which is a part or a whole of an effective pixel region of the second imaging element.
US10887502B2

An information processing apparatus, information processing method, and program are disclosed. In the information processing apparatus, circuitry is configured to transmit an input command to at least one of a plurality of imaging devices that are associated with the information processing apparatus, the command being executable as a synchronous operation or an asynchronous operation based on information relating to at least one of the imaging devices. The information may, for example, be the number of the imaging devices to which the input command is transmitted. In that example, when the number of the imaging devices is below a threshold amount, the input command is transmitted as the synchronous operation, and when the number of the imaging devices is above the threshold amount, the input command is transmitted as the asynchronous operation.
US10887501B2

An inspection device includes: an inspection pattern creating unit that creates an inspection pattern in which first regions each colored with a color different from each other and second regions each colored with a mixed color obtained by mixing at least two of colors with which the first regions are colored are alternately arranged; an irradiation unit that irradiates a surface of an inspection target with the inspection pattern while sliding the inspection pattern by a movement amount; a captured image acquisition unit that acquires a captured image obtained by imaging the surface of the inspection target irradiated with the inspection pattern; and a determination unit that generates color component images obtained by separating the acquired captured image for each of color components of the colors and determines whether or not there is a defect in the surface of the inspection target based on the color component images.
US10887499B2

The present disclosure provides a method for packaging a camera assembly. The method includes providing a photosensitive chip having a plurality of first soldering pads; mounting a filter on the photosensitive chip; providing a first carrier substrate; and bonding a plurality of functional components and the photosensitive chip to the first carrier substrate. The plurality of functional components has a plurality of second soldering pads, and the first soldering pads and the second soldering pads all face away from the first carrier substrate. The method includes forming an encapsulation layer to cover the first carrier substrate, the photosensitive chip, and the functional components. The encapsulation layer exposes the filter. The method further includes forming a redistribution layer structure, on one side of the encapsulation layer close to the filter, to electrically connect to the first soldering pads and the second soldering pads; and removing the first carrier substrate.
US10887483B2

The present invention has disclosed a multifunctional automatic quality inspection machine and a control method thereof. The machine comprises a frame, an unrolling device provided at the frame, an inspection mechanism, a button operating platform, a slitting mechanism, a main controller, a display device, and a rolling device; a paper movement route is provided between the unrolling device and the rolling device; the inspection mechanism and the display device are respectively electrically connected to the main controller; the rolling device includes a first rolling airshaft, a second rolling airshaft, and a rolling drive device; the first rolling airshaft and the second rolling airshaft are provided on the rolling drive device; the first rolling airshaft and the second rolling airshaft swap their positions via the rolling drive device. The machine has a number of functions including automatic unrolling, high inspection precision, discharging waste materials, splitting and quick rolling.
US10887481B2

An image forming apparatus includes: an execution unit that, when a specific execution instruction is received, which specifies that a manual sheet feed section via which a sheet is fed manually is included as a sheet feed source that feeds the sheet, under the condition that the sheet is present in the manual sheet feed section, executes specific printing; and a confirmation unit that, when the execution unit executes first specific printing according to a first specific execution instruction, then receives a second specific execution instruction from an operator different from an operator who has issued the first specific execution instruction, under the condition that the sheet is present in the manual sheet feed section, confirms with the different operator whether the sheet is allowed to be fed from the manual sheet feed section before the execution unit executes second specific printing according to the second specific execution instruction.
US10887476B1

A system and method of using published electronic documents to create communications links between different readers and authors. The original documents may have been optically scanned paper publications, and thus need not initially contain any electronic metadata. These readers and authors may be previously unknown to each other. Here document readers install user-side software on their computerized devices, and these, in turn, communicate with cloud servers running server-side software. Users indicate documents of interest and may assert authorship over some of the documents. The system automatically scans the documents, extracts authorship information, and can use this authorship information to establish electronic links between the readers and authors. Users can exchange comments within the context of any given document, have these comments relayed to authors or other users, and receive context-specific replies back.
US10887472B2

A process for authorizing wireless service includes providing a generally rectangular flat form factor card having a first surface and opposing second surface. The process further includes providing a machine-readable activation code arranged on the first surface, wherein the machine-readable activation code is configured to authorize the wireless service when provided to a system associated with a wireless service provider, receiving the machine-readable activation code in a server, the machine-readable activation code being captured by a wireless device, and provisioning the wireless service to the wireless device from a wireless network when the machine-readable activation code is provided to the system associated with the wireless network.
US10887471B2

A mobile communications device receives an indication of a balance from a server when establishment of a voice call or sending of a message is requested. The mobile communications device determines whether the balance is sufficient to place the voice call or send the message over a mobile network. If the balance is sufficient to place the voice call or send the message over the mobile network, the voice call is established or the message is sent under normal operating conditions. If the balance is insufficient to place the voice call or send the message over the mobile network, a grace period is activated and the voice call is established or the message is sent during the grace period over an available wireless local-area network.
US10887470B2

Aspects of the subject disclosure may include, for example, a method including determining, according to quality of service requirements associated with available services of a communication network, first quality of service parameters associated with facilitating providing a first service to a first communication device, determining, according to the first quality of service parameters, a first allocation of a first resource of a plurality of resources of the communication network to facilitate providing the first service to the first communication device, determining aggregated quality of service requirements associated with the plurality of resources to facilitate providing the available services to the communication devices via the plurality of resources, and directing the first resource to facilitate the first service to the first communication device according to a priority of the first allocation of the first resource based on the aggregated quality of service requirements. Other embodiments are disclosed.
US10887465B2

A network computer system can respond to a call connection signal by making a determination as to whether the call connection is likely to be supported for at least one of the caller or receiver using a first voice communication medium, as compared to an alternative voice communication medium. Based on the determination, the network computer system can cause the call connection to be established using the voice communication medium of the determination.
US10887464B2

Provided are a computer program product, system, and method for classifying a digital speech sample of a call to determine routing for the call. A digital speech sample of a call agent is processed to categorize speech as having an agent speech attribute. Information is received on a caller speech attribute initiating a call to the call center. The caller speech attribute results from categorizing a caller digital speech sample of the caller as having the caller speech attribute. A call agent of call agents having a call agent speech attribute that matches the caller speech attribute is selected and the call is routed to the selected call agent to process the call.
US10887452B2

An architecture for assessing and identifying fraudulent contact with client contact systems, such as IVR, includes threshold and machine learning scoring and filtering of calls based on these criteria. The criteria may include behavioral, situational and reputational scoring.
US10887450B1

A fault in a telecommunication line can be identified and located using line test data for that telecommunication line. A series of line tests can be performed on a selected telecommunication line experiencing problems. The results from the series of line tests can be analyzed to identify differences in the results between the line tests. The identified differences can then be used to determine if a fluctuation is present in the telecommunication line. If a fluctuation is determined to be present in the telecommunication line, the identified differences can also be used to determine a location of the fluctuation relative to reference location such as the distribution point where the telecommunication line originates.
US10887447B2

An apparatus in an illustrative embodiment comprises at least one processing device comprising a processor coupled to a memory. The processing device is configured to obtain an identifier of a first node of a set of nodes deployed at a building or other structure, to associate the first node with a user account, to obtain an identifier of a second node of the set of nodes, and to associate the second node with the first node and the user account. Associating the first node with the user account may comprise, for example, establishing an association between the first node and the user account without the processing device having access to a network connection. Additionally or alternatively, the identifier of the first node may be sent to a backend server over a network connection, with configuration information for the first node being received from the backend server in response thereto.
US10887435B2

A personal digital assistant, including: a mobile telephone equipped with a first screen and a first central processing unit managing a first memory; a casing including at least a second screen and a second central processing unit managing a second memory, the casing including a recess for receiving and removably retaining at least part of the mobile telephone; and communication devices for communication between the central processing units of the casing and the mobile telephone. At least one of the central processing units is configured to store data in each of the first and second memories.
US10887432B2

A method for estimation of performance characteristics for transport control protocol includes sparsely sampling, at a middlebox, a plurality of packets from a transport control protocol (TCP) connection between a source endpoint and a destination endpoint through the middlebox. For each packet of the sampled plurality of packets, the method includes generating a time stamp when the packet is sampled and recording a sequence number and an acknowledgement number for the respective packet. The acknowledgement number is recorded when the acknowledgement number exists for the respective packet. The method also includes generating an estimated performance characteristic for the TCP connection between the source endpoint and the destination endpoint through the middlebox over the period of time based on at least two of a respective time stamp, a respective sequence number, or a respective acknowledgement number from one or more of the sampled plurality of packets.
US10887423B2

Disclosed in some examples are methods, systems, machine-readable media, and devices to provide a personalized experience, by making user data available to a skill in a personal assistant service. In an example, a third-party skill such as an automated bot may obtain user data (such as user profile and contextual information at runtime) to personalize and adjust an interaction to the user. Operations to implement the techniques may include: providing a data interface of the personal assistant service to expose user data maintained by the personal assistant service, based on user data privacy settings and third-party skill permissions; receiving a request from the third-party skill, via the data interface, to obtain the user data to in connection with performing some action of the third-party skill; and providing the user data to the third-party skill in response to the request, based on the permission settings and the privacy settings.
US10887418B1

Embodiments of the present invention include methods and systems for domain name system (DNS) pre-caching. A method for DNS pre-caching is provided. The method includes receiving uniform resource locator (URL) hostnames for DNS pre-fetch resolution prior to a user hostname request for any of the URL hostnames. The method also includes making a DNS lookup call for at least one of the URL hostnames that are not cached by a DNS cache prior to the user hostname request. The method further includes discarding at least one IP address provided by a DNS resolver for the URL hostnames, wherein a resolution result for at least one of the URL hostnames is cached in the DNS cache in preparation for the user hostname request. A system for DNS pre-caching is provided. The system includes a renderer, an asynchronous DNS pre-fetcher and a hostname table.
US10887417B2

A method includes requesting, by a first wireless intelligent content acceleration (WICA) unit, content from a provider and receiving, by the first WICA unit, a first transmission over a backhaul link, the first transmission being based on the request. The method also includes determining whether the first transmission includes a signature without a first block of data or the signature and the first block of data. Additionally, the method includes, upon determining that the first transmission includes the signature without the first block of data, retrieving the first block of data from a content cache in accordance with the signature, and, upon determining that the first transmission includes the signature and the first block of data, saving the signature and the first block of data in the content cache. Also, the method includes processing the first block of data.
US10887415B1

In a network, a common agnostic data exchange method between two devices native to the network, the devices using different formats and transmission protocols, includes invoking a proxy at each device, and a first proxy receiving a first data record from a first device, the first data record having a first format. The first proxy identifies the first format by comparing a first pattern of the first data record to reference patterns of one or more reference data records and determines if a sufficient pattern match exists between the first pattern and the reference pattern. The first proxy translates the first data record's format into an inter-proxy data record having an inter-proxy format and transmits the inter-proxy data record to a second proxy coupled to a second device. The second proxy translates the inter-proxy data record to a second data record having a format employed at the second device.
US10887411B2

A system and method for dynamically adjusting attributes for a network service is described. A computing system can determine a change that is to be implemented to an attribute of the network service. For each of a plurality of computing devices, the computing system can receive information associated with that computing device from a designated application operating on that computing device. The designated application is associated with the network service. The computing system automatically implements the change to at least one but not all of the plurality of computing devices based on the information received from each of the plurality of computing devices.
US10887406B2

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for dynamically selecting a content loading technique are disclosed. In one aspect, a method includes the actions of receiving a request for third-party content. The actions further include generating a first loading score that reflects a likelihood that a third-party content item that is selected using the first third-party content loading technique will render on a display of the client device. The actions further include generating a second loading score that reflects a likelihood that a third-party content item that is selected using the second third-party content loading technique will render on the display. The actions further include comparing the first and second loading scores. The actions further include selecting the first third-party content loading technique. The actions further include selecting and providing a given third-party content item.
US10887400B2

A client device may be used to initiate or answer calls using a host device connected to a network. For example, when a phone operating as a host device receives an incoming call from a network, the phone may communicate the presence of the incoming call to one or more client devices such as laptop, desktop, tablet, or wearable devices that are associated with the host device. When an answer call selection is made at a client, a call answered communication may be sent from the client device to the host device. The host device may then communicate with the network to connect the call to the host, and when the call is connected, the host may hand-off the call to the client that sent the call answered communication.
US10887397B2

A system includes a server to assign a namespace to Internet of Things (IoT) devices, with the IoT devices being at different locations, and with each IoT device having a universal unique identifier (UUID) associated therewith. The server assigns at least one sub-namespace to each IoT device based on its location, and maps the UUID associated with each IoT device to both the namespace and the at least one sub-namespace assigned thereto. A device cooperates with the server to generate commands for controlling the IoT devices based on the namespaces and the at least one sub-namespaces mapped to the respective UUIDs.
US10887395B2

Briefly, embodiments of methods and/or systems of sampling output signal traces by one or more function processors for storage into timeslot arrays are disclosed. In one embodiment, responsive to availability of a connection to an external communications network, computed results of function processing may be conveyed along the external communication network. Responsive to loss of communications to the external communications network, computed parameters may be stored in one or more timeslot arrays, signal sampling intervals, timeslot durations, and transmission frequency to be independent from one another.
US10887372B2

A method for controlling an upload size of data by a device is provided. The method includes determining whether to change a size of data to be uploaded based on a policy of an upload target server, upon determining to change the size of the data to be uploaded, determining an initial transfer size of the data, and uploading a part of the data corresponding to the determined initial transfer size, updating an upload result of the partial data in an upload history, and determining a next transfer size for the data depending on a reception result of the part of the data from the upload target server for a period obtained from the policy.
US10887364B2

Internet streaming from broadcast radio or television stations is described wherein triggers for dynamic content from internal or external systems cause an encoder system to generate command messages, and optionally to synchronize those command messages with any delays associated with the triggering events. Command messages are delivered through a streaming media distribution system to client media players which obtain or present the dynamic content, in association with any desired configuration changes to the appearance of the media player or the method or manner in which the dynamic content is presented.
US10887363B1

Generating streaming decisions at one or more remote servers on behalf of a local client is disclosed. An indication of a content request, multi-dimensional client information, and local state information are received from a client device. A record specific to the client device is generated, in a data store, using the received local state information. The data store includes a plurality of records corresponding to respective different client devices. A set of instructions usable by the client device to obtain and play content is determined based at least in part the local state information received from the client device. The determined set of instructions is transmitted to the client device.
US10887362B2

Systems for identifying misappropriation of forensically-watermarked video content. A method embodiment for forensic watermarking commences upon identifying video sources. A video is partitioned into frame ranges or “chunks”. Different watermarking schemes are applied to the chunks to generate different watermarked versions of each chunk. Upon receiving a request from a user to view a requested video, a digital signature is generated from a set of request attributes such as a user ID or session ID. A video stream is assembled wherein the stream chunk order comprises a particular recoverable sequence of the differing watermarked chunks, where the sequence is based on bit sequences of the digital signature. A misappropriated video or portion thereof can be analyzed to identify the particular recoverable sequence or portion thereof. Based on the recoverable sequence, the digital signature can be recovered, and based on the digital signature, the source of the misappropriation can be determined.
US10887360B1

Direct network connections using cloud instance for multipoint meeting service is provided between two or more computers on a network to facilitate a variety of activities, including desktop sharing, web-meetings, and web-conferences. A first computer sends a request to start a multipoint meeting to a server. The server requests a computing cloud to launch a cloud instance for the first computer. A second computer uses connection information for the first computer cloud instance to send to the first computer cloud instance connection information for the second computer via direct network connection. From this point on, the first computer and the second computer exchange data for multipoint meeting via a direct network connection using the first computer cloud instance, independently of the server.
US10887354B2

Techniques are described for offloading the encoding and decoding of multimedia content transmitted during a real-time communication (RTC) session from the virtual desktop to the client device so that the multimedia content can be communicated directly between the client device and the remote peer device without the involvement of the virtual desktop. The offload eliminates the additional network hop of the multimedia content to the virtual desktop that is present in conventional virtual desktop environments, thereby reducing network latency and improving performance, CPU utilization and network load on the virtual machine hosting the virtual desktop. In order to offload the multimedia encoding/decoding, the techniques described herein intercept a number of Application Programming Interface (API) calls to override the messages used to establish a multimedia communication session between the RTC application and the remote peer device.
US10887347B2

A method and system for perimeter defense of a network are provided. The method comprises receiving, at a system deployed in a perimeter of the network, traffic to or from the network, wherein the network includes a plurality of protection resources; determining, based on the received traffic, at least one potential cyber-attack; and upon determining the at least one potential cyber-attack, causing a mitigation reconfiguration of at least one protection resource of the plurality of protection resources, wherein the mitigation reconfiguration includes reconfiguring each of the at least one protection resource to mitigate the at least one potential cyber-attack.
US10887345B1

Systems and methods for anti-phishing include determining that a user interface corresponding to a current web address has authentication input fields. A current hash value is generated based on a subset of a plurality of input characters that have been input into an authentication input field. The current hash value is compared to mapped hash values. If the current hash value matches one or more of the mapped hash values, a web address mapped to the matched, mapped hash value is identified. The mapped web address is compared to the current web address to determine whether they match. An alert is displayed in response to determining whether there is a match between the current web address and the mapped web address.
US10887340B2

Methods, systems, and media for inhibiting attacks on embedded devices are provided. In some embodiments, a system for inhibiting on embedded devices is provided, the system comprises a processor that is configured to: identify an embedded device that is configured to provide one or more services to one or more digital processing devices within a communications network; receive a first firmware associated with the embedded device; generate a second firmware that is functionally equivalent to the first firmware by: determining unused code within the first firmware; removing the unused code within the second firmware; and restructuring remaining code portions of the first firmware into memory positions within the second firmware; and inject the second firmware into the embedded device.
US10887337B1

Infrastructure attacks involving lateral movement are identified by monitoring system level activities using software agents deployed on respective operating systems, and constructing, based on the system level activities, an execution graph comprising execution trails. A logon session between a remote connection client executing on a first operating system and a remote connection server executing on a second operating system is identified. Behavior exhibited from the logon session is attributed to a first global execution trail in the execution graph. A reconnection to the logon session between a remote connection client executing on a third operating system and the remote connection server is then identified, and, thereafter, behavior exhibited from the logon session is attributed to a second global execution trail in the execution graph.
US10887330B2

Data surveillance techniques are presented for the detection of security issues, especially of the kind where privileged data may be stolen by steganographic, data manipulation or any form of exfiltration attempts. Such attempts may be made by rogue users or admins from the inside of a network, or from outside hackers who are able to intrude into the network and impersonate themselves as legitimate users. The system and methods use a triangulation process whereby analytical results pertaining to data protocol, user-behavior and packet content are combined to establish a baseline for the data. Subsequent incoming data is then scored and compared against the baseline to detect any security anomalies. The above data surveillance techniques are also applied for detecting intentional or unintentional exfiltration/leak of privileged data/assets between unauthorized users/groups of the organization. Such detection may be performed based on analyzing threat stream data from threat intelligence providers.
US10887327B2

A device receives information identifying a specific host threat to a network, where the information includes a list of network addresses associated with the specific host threat. The device identifies network elements, of the network, associated with the specific host threat to the network, and determines a network control system associated with the identified network elements. The device determines a policy enforcement group of network elements, of the identified network elements, that maps to the list of network addresses associated with the specific host threat, where the network control system is associated with the policy enforcement group of network elements. The device determines a threat policy action to enforce for the specific host threat, and causes, via the network control system, the threat policy action to be enforced by the policy enforcement group of network elements.
US10887326B2

A method includes obtaining a dictionary, data for a set of web requests, and definitions of a first set of clusters associated with vulnerability scanners. The method includes identifying a set of clients that transmitted the second set of web requests. The method includes generating a second set of feature vectors, which each corresponds to one of the clients. Each element in each feature vector corresponds respectively to an entry in the dictionary. The method includes clustering the second set of feature vectors into a second set of clusters. The method includes, in response to a first distance between a selected cluster of the second set of clusters and one of the first set of clusters being less than a first predetermined distance, (i) identifying one of the set of web services that received web requests corresponding to feature vectors in the selected cluster and (ii) generating a scanning alert.
US10887325B1

The present disclosure describes a system, method, and computer program for determining the cybersecurity risk associated with a first-time access event in a computer network. In response to receiving an alert that a user has accessed a network entity for the first time, a user behavior analytics system uses a factorization machine to determine the affinity between the accessing user and the accessed entity. The affinity measure is based on the accessing user's historical access patterns in the network, as wells as context data for both the accessing user and the accessed entity. The affinity score for an access event may be used to filter first-time access alerts or weight first-time access alerts in performing a risk assessment of the accessing user's network activity. The result is that many false-positive first-time access alerts are suppressed and not factored (or not factored heavily) into cybersecurity risk assessments.
US10887324B2

A threat scoring system and method are provided in which the threat scoring system and method generates a better threat score. In one embodiment, the system and method may accept threat factors, accept weighting of the threat factors, generate a ground truth and generate a threat scoring using analytics based in part on the generated ground truth.
US10887321B2

Techniques for verifying message authenticity is provided. In some implementations, a verification request to verify authenticity of a first message is received from a user computing device. The verification request includes a first user identifier and verification information. A delivery message record is obtained. The delivery message record includes a plurality of entries associated with one or more messages sent to one or more user computing devices. Each entry includes a user identifier and feature information of a respective message of the one or more messages. At least one entry that has a second user identifier matching the first user identifier is identified. In response to determining that the feature information of the identified at least one entry matches the verification information from the verification request, a verification message is provided to the user computing device. The verification message indicates that authenticity of the first message is verified.
US10887290B2

The present disclosure is directed to systems, methods and devices for securing communication resources of group communication devices. Secure resources of a group communication computing device may be maintained in a secure operating environment of the group communication computing device, which is separate from a normal operating environment of the group communication computing device, via a trust partition comprising one or both of an SoC trust partition and a hypervisor. The secure operating environment may comprise input resources including a microphone, a camera, audio encoding and decoding engines, audio encryption and decryption engines, and a secure operating system. The normal operating environment may comprise resources including LTE and WiFi communication resources, transport layer security layer resources, and an operating system.
US10887285B2

A printer capable of performing communication with a server via a firewall over a printer network includes a roll paper printing mechanism configured to perform printing on roll paper, a cut-form paper printing mechanism configured to perform printing on cut-form paper, and a processor configured to transmit, to the server, at least pairs of address information for the printer and status information for the printer, receive instruction information having been transmitted by the server, and execute processing based on the instruction information, and the processor causes transmission timing points for the transmission of the pairs to the server to differ for each of kinds of the status information.
US10887284B1

A provider network includes a service that creates virtual private network (VPN) endpoint nodes. Application programming interfaces are available that the creation of VPN endpoint nodes, peer them together, and attach them to respective virtual private networks to thereby establish communication tunnels between pairs of virtual private networks. Each VPN endpoint node may be implemented as a fault tolerant endpoint node in which the node is created as a plurality of virtual machines. Each of the virtual machines is configured from a common machine image that includes software capable of causing the respective virtual machine to configure a tunnel such as an IPSec tunnel. One of the virtual machines, however, is operated in an active mode, while another virtual machine is configured to operate in a standby mode.
US10887279B2

Systems and methods for protecting and deduplicating streams of data in a cloud based platform. A platform is configured with multiple services and can communicate with multiple clients. The platform receives all requests at an endpoint and distributes the requests to workers using multiple queues. The platform may be stateless and is scalable. The meta-data is handled separately from the data in one example.
US10887278B2

Taking a zero-configuration approach, a domain name discovery system utilizes, in an iterative process, WHOIS data and infrastructure data for a seed domain to automatically discover domain names having registration and/or infrastructure details that match those of the seed domain. Registration information such as a registered email address associated with a domain name discovered through WHOIS data matching or infrastructure data matching is utilized in a reverse lookup for domain names having infrastructure or WHOIS registered information that fully matches the information associated with the domain name discovered through the iterative process. Domain names discovered through WHOIS data matching, infrastructure data matching, and reverse lookup can be presented through a user interface on a client device communicatively connected to the domain name discovery system over a network. The domain name discovery can be performed periodically or in near real time responsive to receiving a new seed domain.
US10887267B2

Embodiments relate to a system, program product, and method for use with a computer platform to process and physically convey a notification to a physical medium. In response to receipt, a notification is processed against a hierarchical arrangement of categories. The notification is processed in real-time, including translation of the notification with respect to a tier in the hierarchy. A delivery mechanism and associated instruction is dynamically determined, which includes adaptively assigning the translated notification together with a delivery instruction to a destination device. A physical medium and associated physical device are identified, and the notification is physically conveyed to the physical device across the physical medium.
US10887260B2

In some implementations, a return to sender option can be invoked from within a file editing application when a user has edited a file received as a message attachment. The user can select a file attached to a message from within a messaging application. A file editor can be invoked to open and edit the file. The user can select a return to sender option from within the file editor. In response to the selection of the return to sender option, the edited file can be automatically saved, a reply message can be automatically generated and the edited file can be automatically attached to the reply message.
US10887255B2

A system and method for Controller Pilot Data Link Communication (CPDLC) chat is disclosed. The system receives CPDLC signals and displays CPDLC messages sent and received from both ownship aircraft and optionally other nearby aircraft on the ownship aircraft display. Not to interfere with a traditional CPDLC display, the system is an additional display of all CPDLC data and highlights messages to and from the ownship on the aircraft display. The system allows a declutter option to limit displayed data to that of a current data authority (CDA) as well as a limit in range, geography, altitude, aircraft type, etc.
US10887254B2

Enterprise messaging using a blockchain system. A method of the disclosure includes receiving, by a first node of a blockchain system of an enterprise service bus, a message transmitted by a second node of the blockchain system. The blockchain system may be configured to store a plurality of messages communicated via the enterprise service bus in a distributed ledger. The method also includes determining, by the first node, whether the first node should process the message. The method further includes processing, by the first node, the message in response to determining that the message should be processed by the first node. The method further includes updating the distributed ledger to indicate that the message has been processed by the first node.
US10887251B2

Embodiments are directed to a method of implementing a packet capture ring. The packet capture ring includes a plurality of appliances, and the plurality of appliances includes a first appliance and a second appliance. The first appliance and the second appliance are both attached to a network tap, and the first appliance works as a master appliance. The master appliance ingests packets from the network tap, encapsulates the packets and forwards encapsulated packets in the packet capture ring. The method includes: detecting, by the second appliance, a failure of the first appliance; working, by the second appliance, as the master appliance; and removing, by the second appliance, the first appliance from a forwarding designation list.
US10887245B2

The present invention relates generally to an intelligent control and management matrix (ICMM), apparatus, system, and a method thereof. More particularly, the invention encompasses an inventive intelligent control and management matrix (ICMM), or icXengine, which is designed to help resolve a consistent issue seen in packet transmission technology, such as, for example, Ethernet technology, which is called contention. In one aspect the inventive ICMM, monitors, polls, and acts based on traffic flow information, to reduce contention, and to allow more data, video, voice, user content, etc., to pass through the Ethernet system. Thus, the inventive ICMM or icXengine allows for decision making, and traffic policing, based on bandwidth analytics, and a predetermined formulation or criteria.
US10887244B1

Methods, systems and apparatuses for scheduling a plurality of Virtual Links (VLs) in a Time-Triggered Ethernet (TTE) network by determining a weight for each of the plurality of VLs, the determined weight being proportional to a demand each of the plurality of VLs will place on the time-triggered ethernet network; generating a plurality of bins whose length in time is harmonic to all the scheduled rates of the plurality of VLs; determining a demand value proportional to how often the bin is expected to be used based upon a green zone of each of the plurality of VLs and the determined weight for each of the plurality of VLs; updating the demand value for each bin within the green zone; sorting the plurality of bins from least demanded to most demanded based upon the updated demand value; and scheduling the sorted plurality of VLs within the sorted plurality of bins.
US10887241B2

A communication device: stores flow condition information for identifying a flow and flow counter information that indicates, for each flow, an input flow volume of a flow inputted to the communication device, and an output flow volume of a flow outputted by the communication device; identifies a flow to which data inputted to the communication device belongs, with reference to the flow condition information; updates the input flow volume of the flow in the flow counter information; identifies a flow to which data outputted by the communication device belongs, with reference to the flow condition information; updates the output flow volume of the flow in the flow counter information; and identifies a flow in which a communication anomaly has occurred on the basis of results of a comparison process for comparing the input flow volume to the output flow volume with reference to the flow counter information.
US10887239B2

A method is disclosed for tearing down a TCP connection between a transmission control protocol (TCP) client in a radio access network (RAN) and a TCP server, comprising: receiving, at the TCP client, an indication to close the TCP connection; sending, from the TCP client to the TCP server, a TCP segment with a FIN bit set to indicate termination of the TCP connection; and closing, at the TCP client, the TCP connection without waiting for double the maximum segment lifetime period, thereby releasing the radio bearer resources and achieving radio bearer resource optimization.
US10887237B2

An apparatus for load balancing based on available bandwidth estimation includes a bandwidth module configured to determine for a networking device a first available bandwidth estimate for a first egress port and a second available bandwidth estimate for a second egress port, a load balancing module configured to select the first egress port as a selected port in response to determining that the first available bandwidth estimate of the first egress port exceeds a predetermined level and to select the second egress port as the selected port in response to determining that the available bandwidth estimate of the first egress port does not exceed the predetermined level and that the second available bandwidth estimate of the second egress port exceeds the predetermined level, and a transmission module configured to transmit a packet from the selected port. A method and network switching device work similarly to the apparatus.
US10887228B2

Techniques for enabling peer-to-peer transmission of stateful packet flows in a network environment are provided. In certain embodiments, a computer system receives a packet belonging to a stateful flow, determines a query subset from a plurality of query subsets based on information from the packet, determines a first forwarding plane from a plurality of forwarding planes as an owner of the query subset, sends the packet to the first forwarding plane that owns the query subset, receives from the first forwarding plane information indicating that a second forwarding plane from the plurality of forwarding planes is a state analysis owner for the packet, and transmits the packet to the second forwarding plane. Examples of stateful flow include firewall traffic, network address translation traffic, or application layer classification for Quality of Service. In certain embodiments, the state analysis owner for the stateful flow may perform routing functions for the packet.
US10887218B2

A communication session may be broken up into many smaller packet bundles over many tunnels and over different routes in order to obfuscate the entire data stream. Apparatuses may dynamically build hop-by-hop tunnels in a backbone telecommunications network, segment data into packet bundles at the customer edge, or break up data traffic of a communication session along multiple routing or switching paths in order to obfuscate the data traffic of the communication session.
US10887209B2

A method is provided that is performed by a network element in a network. The network element receives a packet. The network element inserts into a header of the packet, packet replication information indicating whether and to which egress interface the network element performs a replication operation on the packet, wherein the header is an In-Situ Operations, Administration and Management (IOAM) header. The network element sends the packet, with the packet replication information included in the IOAM header, in the network.
US10887208B2

A network monitoring device responds to network status data (whether “pushed” from the network device or “pulled” from the network device) to maintain a buffer of saved status data. The network status data is reordered, manipulated, and presented to users of the network monitoring device in order. The monitoring device can provide a status report of the network environment. When network status data is delayed too long, the monitoring device can discard the network status data, or reduce its weighted consideration. The monitoring device attempts to balance accuracy and latency by adjusting wait time for network status data. The monitoring device maintains a record of the amount of network status data it receives and processes from each network device and each network device's ability to provide accurate and complete information to operators and users in a distributed network monitoring environment.
US10887203B2

A supervisory control and data acquisition (SCADA) unit and technique for managing communications over a network of defined capacity. The unit and techniques include safeguarding the network while allowing for operations to proceed at an oilfield. The safeguards allow for multiple additional and different types of equipment to be added to or removed from the network while being managed by a single SCADA unit. This may be achieved through unique filtering protocols which prevent unidentified and/or unconfirmed equipment and devices from being added to the network merely due to be detected at the oilfield.
US10887198B2

A method for operating, by an MEC operator, a multi-access edge computing (MEC) system in which applications are provided by MEC tenants for deployment on MEC hosts of the MEC system and in which various levels of privileges are provided by the MEC operator to the MEC tenants. The method includes assigning, by an MEC broker, privileges to the MEC tenants; initiating, by the MEC broker via interactions with one or more of an MEC Orchestrator, an MEC platform manager, and a user app LCM proxy, operations. The operations can include one or more of application package on-boarding, application instance installation on selected MEC hosts, application provisioning, through configuration of appropriate parameters, and application life-cycle management operations including one or more of bootstrapping, termination, migration, scaling. The method further includes pre-validating, using the privileges provided to the MEC tenants, operation requests issued by the MEC tenants.
US10887194B2

Some embodiments provide a method for troubleshooting a virtual network that is implemented across a plurality of computing devices. The method provides a command line interface (CLI) for receiving and executing commands for debugging and monitoring the virtual network. Each command is for communicating with a set of the computing devices in order to monitor a network service being provided by the set of computing devices. The CLI operates in multiple different contexts for monitoring multiple different types of network services. While the CLI is operating in a particular context for a particular type of network service, the method receives a command comprising a set of identifiers. The method determines the validity of the received command under the particular context. When the received command is valid under the particular context, the method transmits data to a computing device identified by the received command.
US10887191B2

Services in an operating environment are represented by stored service definitions that identify entities that perform the service. Entity definitions identify machine data pertaining to the entity. A key performance indicator (KPI) of the service characterizes the service on the whole or some aspect of it. Each KPI is defined by a search query that derives a value from machine data identified in the entity definitions. Processing devices cause display of a service-monitoring page having services summary information and services aspects information. The summary information displays interactive summary tiles that each correspond to a service and present information about an aggregate KPI that characterizes the service. The aspects information displays interactive aspect tiles that each correspond to a KPI characterizing some aspect of an associated service. Additional information may be included in the service-monitoring page and interaction features enable a user to navigate to enhanced information displays.
US10887187B2

Techniques for integrating a device platform in a core network or MEC environment, and managing data communications associated with devices are presented. The device platform, integrated with the core network or MEC environment, can comprise a communication management component (CMC) that can manage communication of data associated with devices connected to the core network. CMC can receive data and metadata from a device, analyze the data and metadata, and, based on the analyzing and data management criteria, determine whether any, all, or a portion of the data is to be communicated to a second device associated with the core network or associated communication network. CMC can be trained, using machine learning, to learn to identify device types, communication protocols, and data payload formats of devices. Based on the analyzing and the training, CMC can determine the device type, communication protocol, and data payload format associated with the device.
US10887183B1

An information handling system such as a server, network switch, or virtual host collects electronic network topology data to identify topological redundancies between networked devices. Each topological redundancy indicates that a particular networked device has at least two physical cable connections to at least two other, separate devices. A topological redundancy to two network switches, for example, ensures that a networked device remains communicatively available should one of the network switches fail.
US10887180B2

Disclosed are various examples for Internet of Things (IoT) device discovery and deployment. In some embodiments, a device identifier is received from an IoT device. The IoT device is determined, based on the device identifier, to be associated with a device account with a management service. An enrollment of the IoT device is performed. A capabilities declaration is received from the IoT device. IoT device instructions are determined based on the capabilities declaration. IoT device instructions are transmitted to the IoT device, causing it to perform a capability specified in the capabilities declaration.
US10887179B2

A method of managing the lifecycle of cloud service modeled as a topology includes, with a processor, generating a topology, the topology representing a cloud service, associating a number of lifecycle management actions (LCMAs) with a number of nodes within the topology, associating a number of policies with a number of nodes within the topology, the policies guiding the lifecycle management of the nodes, and with a lifecycle management engine, executing the topology.
US10887175B2

A policy server correlates information from several messages associated with a client device to implement an identity-based network access policy. A network element connected to the client device obtains an authentication message including a first network address from the client device. The network element provides the authentication device to an identity server via a Network Address Translation (NAT) device, which translates the first network address to a second network address. The network element also provides a first message including the first network address to the policy server to request an identity-based policy for network communications of the client device. The network element implements the identity-based policy authorized by the policy server.
US10887172B2

An optimum configuration of resources in a network function virtualisation data network is identified by assembling candidate configurations of resources (243), each configuration being an arrangement of the resources into clusters selected such that each cluster provides one or more required services, (212, 213) and assessing the candidate configurations (step 400) to identify an optimum configuration, the assessment of each configuration including measurement of latency (195) in physical links between the resources and, for each candidate configuration, determination of the total latency between the resources within each cluster of the configuration, for a predicted level and pattern of traffic associated with the required service to be operated by each cluster.
US10887163B2

The embodiments relate to dynamic server drawer build plan management. Output data associated with a data source is received. A drawer build plan list and one or more inventory scenarios are generated based on the received data. At least one build plan is chosen from the build plan list, and one or more drawer design configurations are compared to at least one inventory scenario to produce a set of eligible drawer design configurations. A drawer design configuration is selected from the set for one or more respective drawer build plans based on one or more constraints. A connection is established to a computer, and information associated with each selected drawer design configuration is transmitted to the second computer.
US10887159B2

Disclosed herein are systems and methods for detection of a path break in a communication network by one network appliance of a plurality of network appliance. A communication path that is transitioning from active to idle state can be quickly determined by evaluating network data traffic within a predetermined time interval after the end of a data transmission. By strategically utilizing health probes at only a set predetermined time interval after a data transmission, a path break condition can be quickly determined without significant use of network bandwidth. Further, the path break condition can be determined unilaterally by one network appliance.
US10887158B2

Various embodiments provide for alert generation based on alert dependency. For some embodiments, the alert dependency checking facilitates alert noise reduction. Various embodiments described herein dynamically find or discover alert dependencies based on one or more alerts currently active, one or more active alerts generated in the past, or some combination of both. Various embodiments described herein provide alert monitoring that adapts based on an alert state of a machine. Various embodiments described herein generate a health score for a machine based on an alert state of the machine. Various embodiments described herein provide a tool for managing definitions of one or more alerts that can be identified as an active alert for a machine.
US10887156B2

Examples herein describe systems and methods for self-healing in a Telco network function virtualization cloud. KPI attributes for virtual network functions can be mapped to physical fault notifications to create synthesized alerts. The synthesized alerts can include information from both a virtual and physical layer, allowing a self-healing action framework to determine root causes of problems in the Telco cloud. Remedial actions can then be performed in either the virtual or physical layer of the Telco cloud. Remedial actions in one layer can be based on root causes identified in the other, which can allow for remediation before network downtime occurs.
US10887152B2

A wireless device receives configuration parameters for a first logical channel indicating a first mapping restriction of the first logical channel to at least one first radio resource type of a plurality of radio resource types. The at least one first radio resource type indicates one of a licensed radio resource type or an unlicensed radio resource type. An uplink grant indicating radio resources of a radio resource type in the plurality of radio resource types is received. Based a determination that the radio resource type of the uplink grant is one of the at least one first radio resource type based on the first mapping restriction, a first buffer status report (BSR) retransmission timer for triggering a BSR indicating an amount of data comprising data of a buffer of the first logical channel is restarted. A BSR transmission is triggered in response to the first BSR retransmission timer expiring.
US10887134B2

A circuit device includes a first terminal, a second terminal, a receiving circuit configured to receive the differential signals via the first terminal and the second terminal, a first signal line connecting a first input terminal of the receiving circuit and the first terminal, a second signal line connecting a second input terminal of the receiving circuit and the second terminal, a first capacitor circuit having one end connected to the first signal line, a second capacitor circuit having one end connected to the second signal line, and a detection circuit configured to detect a duty cycle of an output signal that is output from the receiving circuit.
US10887125B2

A voice controlled device comprises a housing, a dock, a coupling mechanism, and a microphone. The dock is configured to connect the housing to a plurality of host appliances. The coupling mechanism is configured to receive an identification value indicative of docking between the voice controlled device and a currently connected host appliance of the plurality of host appliances. The microphone is configured to receive one or more voice inputs for the currently connected host appliance. A command is provided based on the one or more voice inputs and the identification value.
US10887117B2

A powered device (PD) used for power over Ethernet (PoE), where the PD includes an Ethernet port and a rectifier circuit. The rectifier circuit includes a first control circuit and a second control circuit, where the first control circuit is configured to control a first metal-oxide semiconductor field-effect transistor (MOSFET) and a second MOSFET, avoid turning on the first MOSFET and the second MOSFET at a PoE detection stage, and turn on at least one of the first MOSFET or the second MOSFET at a PoE power supply stage. The second control circuit is configured to control a third MOSFET and a fourth MOSFET, turn on at least one of the third MOSFET or the fourth MOSFET at the PoE power supply stage, and avoid turning on the third MOSFET and the fourth MOSFET at the PoE detection stage.
US10887110B2

The present invention disclosed a method operable on a multiparty signing system for performing a multiparty signing act on a digital content. The multiparty signing system disclosed in the present invention comprises at least two multiparty signing servers configured with methods to perform the multiparty signing act of a digital content to sign. The multiparty signing system can be configured to perform the multiparty signing act by a private signing key split to at least two key shares, wherein each key share is held by each of the at least two multiparty signing servers. The multiparty signing system is also configured to communicate with at least one computerized node employed to conduct an approval process for approving the multiparty signing act. The approval process can be configured to conduct the approval process by employing a secure multiparty computation, wherein the approval process is configured to utilize secret shares held by the at least one computerized node. In such cases, the multiparty signing act is approved in case the approval process ended successfully.
US10887102B2

A method of managing servers of a distributed computer system by using an intent-based CLI (command line interface) executing by one or more processors of a remote computing device, the servers hosting a virtual cluster comprising one or more virtual machines. The method includes receiving, by a first server of the servers, a connection-request from the intent-based CLI to establish an encrypted connection between the first server and the remote computing device. The method includes authenticating the connection-request and establishing, in response to authenticating the connection-request, a first encrypted communication channel between the first server and the remote computing device. The method includes receiving, via the first encrypted communication channel, an operation-request for a list of intent-based operations supported by the first server. The method includes building, by the first server and in response to receipt of the operation-request, a list of intent-based operations supported by the first server.
US10887097B1

A physical card (in some cases without any on-board source of power or computing capabilities) is configured to maintain access information for digital bearer assets. The physical card may include disposed thereon a single address operable to receive digital bearer assets in one or more transactions on a decentralized computing platform, like a blockchain-based decentralized computing platform. Other decentralized computing platforms utilize different address generation protocols, thus preventing use of a single address on those other platforms. A set of addresses is generated, each address corresponding to a given decentralized computing platform. Each address is based on a same underlying key-pair, and a primary address is selected from the set for a given card. The remaining addresses in the set are stored, without storage of the public key or private key, and returned in a response to a request for additional addresses of the currency card.
US10887096B2

In some embodiments, an apparatus having at least a portion of a first instance of a distributed database at a first compute device is configured to be included within a group of compute devices that implement via a network operatively coupled to the group of compute devices the distributed database. The distributed database enables anonymous transfers of digital assets between compute devices via a transfer protocol such that an identity of a compute device associated with a private key corresponding to a public key logically related to a destination record is concealed among a set of compute devices including the first compute device and at least one second compute device.
US10887088B2

A computing device includes an interface configured to interface and communicate with a communication system, a memory that stores operational instructions, and processing circuitry operably coupled to the interface and to the memory that is configured to execute the operational instructions to perform various operations. The computing device processes an input value (e.g., associated with a key) based on a blinding key (e.g., homomorphic encryption) to generate a blinded value and generates an Oblivious Key Access Request (OKAR). The computing device transmits the OKAR to another computing device (e.g., associated with a Key Management System (KMS) service) and receives a blinded key therefrom that is based on a Partially-Oblivious Pseudorandom Function (P-OPRF). The computing device processes the blinded key based on the blinding key (e.g., homomorphic decryption) to generate the key (e.g., associated with the input value). In some examples, the computing device accesses secure information based on the key.
US10887086B1

A system, method, and computer-readable storage medium for protecting a set of storage devices using a secret sharing scheme in combination with an external secret. An initial master secret is generated and then transformed into a final master secret using an external secret. A plurality of shares are generated from the initial master secret and distributed to the storage devices. The data of each storage device is encrypted with a device-specific key, and this key is encrypted using the final master secret. In order to read the data on a given storage device, the initial master secret reconstructed from a threshold number of shares and the external secret is retrieved. Next, the initial master secret is transformed into the final master secret using the external secret, and then the final master secret is used to decrypt the encrypted key of a given storage device.
US10887064B2

The present invention relates to a wireless communication system. More particularly, the present invention relates to a method and to an apparatus for transmitting an SRS in a multi-antenna system. The method comprises the steps of: acquiring specific information for discriminating a first antenna group and a second antenna group from among a plurality of antennas, wherein said first antenna group includes one or more antennas which are set to a turned-on state to perform communication with a base station, and said second antenna group includes one or more other antennas which are set to a turned-off state; transmitting an SRS to the base station if a predetermined condition is satisfied, under the condition that the second antenna group is set to the turned-off state; and setting the second antenna group to a turned-off state after the transmission of the SRS.
US10887059B2

Embodiments of methods and apparatuses for resource allocation in a wireless communication system are disclosed. In one embodiment, a method of wireless communication comprises obtaining data to be transmitted in a wireless communication environment, determining channel conditions associated with a plurality of sub-channels which includes determining one or more sub-channels to transmit silent symbols according to the channel conditions associated with the plurality of sub-channels, scheduling the data to be transmitted according to the channel conditions associated with the plurality of sub-channels to form scheduled data for transmission, and transmitting the scheduled data to one or more receivers via the plurality of sub-channels. The method of determining channel conditions associated with the plurality of sub-channels comprises determining interference observed at each sub-channel in the plurality of sub-channels.
US10887055B2

A method of transmitting blocks of data in a wireless telecommunications system in which blocks of data are transmitted a plurality of times. When a first block of data becomes available for transmission an initial selection of transmission resources for a plurality of transmissions of the first block of data in a corresponding plurality of time periods is made, and transmissions of the first block of data are started. While there are still transmissions of the first block of data which remain to be made, a second block of data becomes available for transmission. In response to this, the initial selection of transmission resources for the remaining repeat transmissions of the first block of data is modified to increase the amount of resource available for transmitting the second block of data during the time periods in which repeat transmissions of the first block of data remain to be made.
US10887040B2

Methods and apparatus for allocating scrambling codes to cells of a wireless network. In an example method, current scrambling code allocation information for a plurality of cells and network configuration information for a radio access network are received. A reallocation of scrambling codes to the plurality of cells is computed, based on the current scrambling code allocation information and the network configuration information, using a metaheuristic algorithm. A change in scrambling code for at least one of the plurality of cells is then triggered, based on the computed reallocation. In some embodiments, the metaheuristic algorithm is based on an objective function that comprises a summation of interference metrics for each of the plurality of cells, wherein the interference metrics depend on scrambling code allocations to the plurality of cells. In some embodiments, a simulated annealing metaheuristic is used.
US10887039B2

A wireless network is provided that includes a base station and subscriber stations that communicate with the base station using radio frequency (RF) time division duplex (TDD) signaling. The base station may establish medium access control (MAC) connections with each station. The base station monitors communications with the stations and, in accordance, assigns stations or MAC connections to modulation groups. The base station transmits signals on MAC connections or to stations in a modulation group in adjacent TDD slots within a TDD frame. The base station may receive access requests from the stations, evaluate traffic requirements for the stations, and determine a longest downlink portion for the stations. The base station then allocates downlink and uplink portions of a TDD frame according to the length of the longest downlink portion.
US10887038B2

A Grandmaster clock is presented. The Grandmaster clock has a GNSS interface receiving GNSS time sync data, a Real Time Clock (RTC) with a crystal oscillator, one or more communication interfaces exchanging data with clock correction sources, and a clock correction host. The clock correction host computes clock drift based on the GNSS time sync data and the data from clock correction sources, generating adjusted clock data, and writing the adjusted clock data to the RTC from different locations. The Grandmaster clock may be in a vehicle.
US10887033B1

The present invention relates to a method and a device 10 for processing mixed audio data, including decomposing in real-time with low latency, in which a continuous stream of mixed audio data is received from an audio source 14, a first chunk of the stream of mixed audio data is loaded into a buffer, the audio data contained in the buffer is decomposed to obtain first decomposed audio data representing audio signals of a predetermined timbre, and a first chunk of output data is obtained from the first decomposed audio data, preferably for direct playback via speaker 26.
US10887032B2

A mobile device may be configured with multiple receivers (e.g., a cellular receiver, a broadcast receiver such as FM, AM, DTV, a satellite receiver, a NWR receiver, etc.). Upon receipt of an emergency alert message via at least one of the receivers, the mobile device, via an application installed on the mobile device, may extract the emergency alert message from a data channel of the broadcast. The mobile device, via the application, may process the extracted emergency alert message to determine if the emergency alert message is to be rendered via the device. And, if the emergency alert message is to be rendered, the mobile device, via the application, may format the extracted emergency alert message to conform to a standard format (e.g., Commercial Mobile Alert System, CMAS, format).
US10887026B1

Technologies directed to antenna disconnection detection of distributed radio frequency (RF) ports in a wireless network are described. One method receives data from the wireless devices and generates an RSSI matrix including multiple elements, each storing a receive signal strength indicator (RSSI) value indicative of a signal strength of a wireless link between a transmitter-receiver pair. The method identifies a characteristic pattern in the RSSI matrix. The characteristic pattern includes i) two or more RSSI values in a same row being less than the threshold value and ii) two or more RSSI values in a same column being less than the threshold value. The method stores an indication that an antenna is disconnected from an RF port and sends a command to the second wireless device that causes the second wireless device to disable a radio that is coupled to the RF port.
US10887023B1

A passenger vehicle optical communication system includes a source vehicle including a light source and an endpoint vehicle including a camera. The source vehicle transmits a series of patterns using the light source to communicate, as one example, state information to the endpoint vehicle.
US10887018B2

The present disclosure relates to a fiber optic network including a plurality of fiber distribution components daisy chained together to form a chain of fiber distribution components, the chain of fiber distribution components having a first set of optical fiber paths that are indexed along a length of the chain and a second set of optical fiber paths that are not indexed along a length of the chain.
US10887014B1

An optical transceiver for controlling a steering angle between a receive light beam and a transmit light beam includes an optical beam coupling device. The optical beam coupling device comprises a plurality of optical elements configured to control a steering angle between the receive light beam received by the optical beam coupling device along a first line of sight (LOS) and the transmit light beam that is output from the optical beam coupling device along a second LOS different from the first LOS, wherein both the receive light beam and the transmit light beam pass through the plurality of optical elements. The plurality of optical elements have a set of combinations for different positions of each of the optical elements, wherein each position in the set of combinations induces a different steering angle between the transmit light beam and the receive light beam.
US10887007B2

A method is provided for determining the gain spectrum of an optical amplifier such as an erbium doped optical amplifier (EDFA). In accordance with the method, an optical amplifier such as an EDFA that is to accommodate a specified number of channels at different optical wavelengths is provided. A subset of the specified number of channels at which gain is to be measured is selected. The number of channels in the subset is determined based at least in part on a number of samples required by the Nyquist sampling theorem to reconstruct the gain spectrum. A gain value for each channel in the selected subset of channels is measured for a probe signal that does not perturb the gain spectrum of the EDFA by more than a prescribed amount. The gain spectrum for the EDFA is constructed from the measured gain values.
US10886999B2

A reconfigurable, multi-band hybrid beamforming architecture is introduced. The present invention is related to a Cartesian-Combining architecture to efficiently implement RF beamforming for a single downconversion chain employing direct downconversion in which the Cartesian-Combining architecture is extended to hybrid beamforming and to heterodyne downconversion.
US10886995B2

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station may transmit, to a user equipment, uplink beam management configuration information identifying an uplink beam management configuration or downlink beam management configuration information identifying a downlink beam management configuration, wherein the uplink beam management configuration is associated with the downlink beam management configuration. The base station may communicate with the user equipment in accordance with the uplink beam management configuration and the downlink beam management configuration based at least in part on transmitting the uplink beam management configuration or the downlink beam management configuration. Numerous other aspects are provided.
US10886994B2

A first communication device calculates an initial matrix from an estimate of a communication channel, and performs a matrix decomposition of the initial matrix to decompose the initial matrix into a plurality of decomposition matrices. Performing the matrix decomposition comprises determining angles for rotation operations performed on the initial matrix as part of decomposing the initial matrix. The first communication device determines compressed feedback using the angles that were determined as part of decomposing the initial matrix into the plurality of decomposition matrices. The compressed feedback is a compressed representation of a beamforming steering matrix corresponding to the estimate of the communication channel. The first communication device transmits the compressed feedback to a second communication device to enable the second communication device to beamform at least one subsequent transmission to the first communication device.
US10886993B2

Techniques discussed herein can facilitate L1 (Layer 1) inter-cell beam management. Various embodiments can employ at least one of a first set of techniques or a second set of techniques for L1 inter-cell beam management. The first set of techniques can employ SSB (Synchronization Signal Block)-based L1 inter-cell beam management. The second set of techniques can employ Sync (Synchronization)-CSI (Channel State Information)-RS (Reference Signal)-based L1 inter-cell beam management. Various options of the second set of techniques can employ CSI-RS with CDM (Code Division Multiplexing) or without CDM.
US10886992B2

It would be to provide a method which will work with future versions of LTE-A, be backwards compatible and alleviate interference to signals for basic system operation. The method includes generating one or more Reference Signals associated with the one or more Channel Quality Indicators, and includes mapping the one or more Channel Quality Indicator-Reference Signals to the last symbol of the second slot of the one or more subframes.
US10886990B2

Implementations of this application propose example methods and apparatuses for feeding back channel state information. In one example method applied to a wireless communications system, operations include receiving, by a user equipment, time configuration signaling and feedback configuration signaling, where the time configuration signaling is used to set a feedback time period and the feedback configuration signaling is used to configure one or more feedback cycles. The user equipment obtains and sends channel state information in one or more feedback cycles during the feedback time period.
US10886985B2

A receiver receives and processes a radio signal received via a frequency selective radio channel from a transmitter employing a plurality of transmit antennas. The receiver determines, based on the received signal, complex precoder coefficients and delays of respective space-delay precoders for each layer and transmit antenna at the transmitter so as to achieve a predefined property for a communication over the radio channel, each space-delay precoder modeling or defining for the associated transmit antenna a plurality of cyclic filters delaying and weighting a signal to be transmitted with the corresponding precoder delays and complex precoder coefficients, respectively, and feeds back to the transmitter the determined delays explicitly or implicitly and the determined complex precoder coefficients explicitly or implicitly, the transmitter precoding the signals to be transmitted to the receiver using the fed back delays and complex precoder coefficients.
US10886971B1

A double alternating frequency algorithm (DAFA) uses a high frequency carrier wave (>1 GHz) that lies above environmental noise and is capable of carrying large amounts of data, stacks a plurality of N frequency channels on the carrier wave (e.g., one channel for each transformer serviced by a substation) and changes the frequency of the carrier wave at each transformer to repeat the data for downstream and upstream propagation for providing broadband Internet over power lines. This approach will fulfill the promise of broadband Internet to the vast rural areas of the United States that do not have access to broadband Internet. Furthermore, this approach will provide another revenue source for utility companies to leverage the existing power distribution system.
US10886970B2

A load drive system for driving a load supplied with power from a power line includes a control unit which controls switching between the power line and the load and a communication unit which communicates using voltage and current of the power line. When performing the switching, the control unit controls, based on a width of a transition period of the power-line current, the transition period being attributable to the switching, timing of the switching so as to move the transition period away from a center of a period corresponding to a symbol communicated by the communication unit.
US10886960B2

A button assembly of the present invention is configured in a communication equipment. The button assembly includes a button, a tray and at least an elastic arm. A side of the button is recessed inward to form a holding space. At least an inner side wall of the holding space is recessed to form a clamping groove. The tray is disposed in the holding space. The elastic arm has a fixing portion mounted on a side wall of the tray. The fixing portion is extended frontward and is protruded outward to form a contact part. The contact part is extended frontward and outward to form a clamping part disposed in the clamping groove. The clamping groove and the elastic arm are disposed to provide the button and the tray to be fixed or disengaged, achieving an effect of saving space in assembling of internal components of the communication equipment.
US10886947B2

Various implementations are directed to systems and methods for maintaining integrity and reliability of data in an SSD device using error correction coding. According to certain aspects, for frames of data having an ECC code with two or more sub-codes, while one sub-decoder is not in use it could be used to start a decode of another frame. By “interleaving” and alternating the frames between sub-decoders, two or more frames can be decoded simultaneously in an efficient manner. This can clearly be extended to more sub-codes (i.e. dimensions greater than two).
US10886944B2

A low-density parity-check code scaling method is disclosed. The method includes following steps: obtaining the original low-density parity-check matrix; forming the permutation matrices with the random row shift or the random column shift to the identity matrix; replacing the component codes by the permutation matrices and the all-zero matrix to form the extended low-density parity-check matrix; adjusting the code length and the code rate to form the global coupled low-density parity-check matrix; and outputting the global coupled low-density parity-check code.
US10886943B2

A method and apparatus for variable rate compression with a conditional autoencoder is herein provided. According to one embodiment, a method includes training a conditional autoencoder using a Lagrange multiplier and training a neural network that includes the conditional autoencoder with mixed quantization bin sizes.
US10886941B2

A pulse density modulation method includes the following steps: S01, obtaining a number of bits n of a binary density value d, setting a number of bits of a counter as n, an initial value of the counter is 0 or 1; S02, searching for a rightmost 1: obtaining a number of bits j of the rightmost 1 of a current value i of the counter counted from right to left; a number in the counter is a binary number; a minimum value of j is 1; S03, determining whether corresponding bits are equal; S04, adding the value i of the counter by 1, proceeding to a next period, and turning to the step S02.
US10886937B1

Methods and devices are described for controlling excess loop delay (ELD) gain compensation in a digital-to-analog converter (DAC) of a successive approximation register (SAR) analog-to-digital converter (ADC) by using DAC unit elements in the ELD DAC and DACs for the SAR ADC efficiently. The ELD DAC and DAC partially share DAC units (e.g. capacitors or current sources) to minimize total DAC units used to limit area and power usage while maintaining operational flexibility. Different configurations provide ELD gains of less than or greater than one. A dedicated sampling capacitor is also provided to allow flexible gain control by capacitance ratio.
US10886935B2

SAR-DAC devices and operation methods of SAR-DAC devices are provided. An exemplary SAR-DAC device includes a comparator having a positive input terminal and a negative input terminal; and a DAC core unit including a first capacitor, a second capacitor, and a current-controlled discharging structure. The first capacitor includes a first charging-discharging terminal. The second capacitor includes a second charging-discharging terminal. The current-controlled discharging structure includes current beam circuit units. Each current beam circuit unit includes a first discharging input terminal connected to the first charging-discharging terminal and a second discharging input terminal connected to the second charging-discharging terminal. The current-controlled discharging structure is configured to discharge the first capacitor through the first discharging input terminal by using at least some of the current beam circuit units; and to discharge the second capacitor through the second discharging input terminal using at least some of the current beam circuit units.
US10886934B2

A time to digital converter includes a state transition section configured to start, based on a trigger signal, state transition in which an internal state transitions, a transition-state acquiring section configured to acquire, in synchronization with a reference signal, state information from the state transition section and hold the state information, and an arithmetic operation section configured to calculate, based on the state information, a time digital value corresponding to the number of times of transition of the internal state. The state transition section includes a tapped delay line to which a plurality of delay elements are coupled, a logic circuit, and a state machine. The state information is represented by count information output from the state machine and propagation information output from the tapped delay line. A hamming distance of the state information before and after the state transition is 1. A time from when the internal state transitions from a first internal state to a second internal state until when the internal state reverts to the first internal state is longer than a time interval for updating the state information held by the transition-state acquiring section.
US10886926B1

According to a synchronization method, a basic timing signal generation circuit generates a basic timing signal. A communication control circuit generates a first communication cycle timing signal, measures an input difference between the basic timing signal and a predetermined one of first communication cycle timing signals, divides a compensation value responsive to the input difference by the number of first communication cycle timing signals, adds up a value resulting from the division in a communication cycle, compensates for timing of generating the first communication cycle timing signal with timing equal to or greater than a predetermined value, and transmits timing compensation data to external equipment. The external equipment generates a second communication cycle timing signal, compensates for timing of generating the second communication cycle timing signal based on timing of receipt of the timing compensation data, and synchronizes with the first communication cycle timing signal.
US10886923B1

Methods, systems, and apparatus, including a system that includes a first integrated circuit chip configured to store application logic for one or more executable applications; and a second integrated circuit chip communicatively coupled to the first integrated circuit chip, the second integrated circuit chip including an instruction decoder configured to decode instructions for executing the one or more executable applications; and a communication interface configured to transmit the decoded instructions to the first integrated circuit chip to execute the one or more executable applications on the first integrated circuit chip.
US10886921B1

Examples described herein generally relate to multi-chip devices having stacked chips. In an example, a multi-chip device includes a chip stack including a base chip and two or more overlying chips overlying the base chip. Neighboring chips of the chip stack are connected to each other. The chip stack includes identification generation connections and circuits configured to generate a unique identification of each overlying chip based on a relative position of the respective overlying chip with reference to the base chip. The chip stack includes a communication channel from the base chip to each overlying chip. Each overlying chip includes comparison and enable/disable logic (CEDL) communicatively coupled to the communication channel. The CEDL is configured to compare a target identification of data received by the respective overlying chip to the unique identification of the respective overlying chip and responsively enable or disable a recipient circuit of the respective overlying chip.
US10886916B2

Disclosed is a signal transmission circuit, comprising: a common interface, a first switch, a second switch, and an interference-resistant branch; the common interface is configured to, receive a digital signal through the first switch when the first switch is closed, or to receive an analog signal through the second switch when the second switch is closed; the interference-resistant branch is configured to eliminate an interference of the second switch on the digital signal; a signal input of the interference-resistant branch is configured to receive the digital signal, and a signal output of the interference-resistant branch is connected to a signal input of the first switch; and/or, the signal input of the interference-resistant branch is connected to a signal output of the second switch, and the signal output of the interference-resistant branch is connected to a signal input of the common interface.
US10886912B2

The present disclosure provides a gate circuit and a gate drive circuit for a power semiconductor switch, including: a zener diode and a charge dissipation circuit. A first end of the zener diode is connected to a first end of the charge dissipation circuit and a gate of the power semiconductor switch, a second end of the zener diode is connected to a second end of the charge dissipation circuit and a second end of the power semiconductor switch. A first parasitic capacitor is formed between a first end and the gate of the power semiconductor switch, and a second parasitic capacitor is formed between the gate and the second end of the power semiconductor switch.
US10886909B2

An electric assembly includes an insulated gate bipolar transistor device, a wide-bandgap transistor device electrically connected in parallel with the bipolar transistor device and a control circuit. The control circuit is electrically coupled to a gate terminal of the bipolar transistor device and to a control terminal of the wide-bandgap transistor device. The control circuit is configured to turn on the bipolar transistor device and to turn on the wide-bandgap transistor device at a predefined turn-on delay with respect to a turn-on of the bipolar transistor device.
US10886904B1

Certain aspects of the present disclosure generally relate to a power stage. The power stage generally includes a first transistor, a second transistor having a drain coupled to a drain of the first transistor, a first gate drive circuit coupled between an input node of the power stage and a gate of the first transistor, and a second gate drive circuit having a first signal path coupled between the input node and a gate of the second transistor. In certain aspects, the second gate drive circuit comprises a plurality of buffers in the first signal path, and a plurality of electronic devices coupled to the plurality of buffers and configured to apply a delay associated with driving the gate of the second transistor to track a delay associated with driving the gate of the first transistor via the first gate drive circuit.
US10886898B1

A memory device includes a terminal calibration circuit having at least one of a pull-down circuit or a pull-up circuit used in calibrating an impedance of a data bus termination. The memory device also includes a reference calibration circuit configured to generate a calibration current. The terminal calibration circuit can be configured to program an impedance of the least one of a pull-down circuit or a pull-up circuit based on the calibration current.
US10886890B2

Provided is a high-performance composite substrate for surface acoustic wave device which has good temperature characteristics and in which spurious caused by the reflection of a wave on a joined interface between a piezoelectric crystal film and a support substrate is reduced. The composite substrate for surface acoustic wave device includes: a piezoelectric single crystal substrate; and a support substrate, where, at a portion of a joined interface between the piezoelectric single crystal substrate and the support substrate, at least one of the piezoelectric single crystal substrate and the support substrate has an uneven structure, a ratio of an average length RSm of elements in a cross-sectional curve of the uneven structure to a wavelength λ of a surface acoustic wave when the substrate is used as a surface acoustic wave device is equal to or more than 0.2 and equal to or less than 7.0.
US10886880B2

Apparatus and methods for LNAs with mid-node impedance networks are provided herein. In certain configurations, an LNA includes a mid-node impedance circuit including a resistor and a capacitor electrically connected in parallel, a cascode device electrically connected between an output terminal and the mid-node impedance circuit, and a transconductance device electrically connected between the mid-node impedance circuit and ground. The transconductance device amplifies a radio frequency signal received from an input terminal. The LNA further includes a feedback bias circuit electrically connected between the output terminal and the input terminal and operable to control an input bias voltage of the transconductance device.
US10886874B2

One or more hybrid management modules for Photovoltaic (PV) systems are provided. These modules may be configured for peer-to-peer communication and may also be configured for cellular communication outside of the PV system. The modules may be coupled or located near individual PV modules and may be configured with or alongside PV inverters or converters. The modules may take the place of a central system manager located beyond a main service panel and may work in conjunction with a controller located beyond a main service panel.
US10886865B2

A motor controller that controls a motor including two windings includes a calculator to compute a current instruction value to drive the motor, a first motor driver to supply a first current to one of the windings based on the current instruction value, a second motor driver to supply a second current to the other of the windings based on the current instruction value, a first current detector to detect the first current supplied to the motor from the first motor driver, and a second current detector to detect the second current supplied to the motor from the second motor driver. The calculator supplies a first forced current to the first motor driver, and a second forced current in opposite phase of the first forced current to the second motor driver to determine an abnormality of the first current detector and/or the second current detector.
US10886858B1

Circuits and methods for power conversion. In some examples, a modular multi-level converter (MMC) is configured for power conversion between an alternating current (AC) bus and a direct current (DC) bus. The MMC includes submodules arranged into a phase leg for at least one phase of the AC bus. Each submodule includes an energy storage component and a switch configured for bypassing the energy storage component or connecting the energy storage component into the phase leg. The MMC includes a pre-charger circuit configured to pre-charge the energy storage components of the submodules. The pre-charger circuit is configured for providing a first DC voltage that is lower than a second DC voltage on the DC bus, and the pre-charger circuit is coupled to an end submodule of the phase leg.
US10886856B2

A power converter includes a power converting circuit, an output current control circuit, a high-voltage control circuit, a low-voltage control circuit, and a driving circuit. The power converting circuit receives and converts a HV dc voltage from a HV side to a LV dc voltage to a LV side. The output current control circuit is configured to detect an output current and output a first control signal. The high-voltage control circuit is configured to detect the HV dc voltage and output a second control signal. The low-voltage control circuit is configured to detect the LV dc voltage and output a third control signal selectively according to the LV dc voltage, or the LV dc voltage and the first control signal, or the LV dc voltage and the second control signal. The driving voltage outputs a driving signal to drive the power converting circuit according to the third control signal.
US10886846B2

A power converter circuit includes a power stage comprising a transformer and a power switch. The power switch can be controlled in response to a PWM signal to provide a primary current through a primary winding of the transformer to induce a secondary current in a secondary winding of the transformer to generate an output voltage. The power stage includes a switching node having a switching voltage between the power switch and the primary winding. A switching controller includes a control transistor device to initiate an operational voltage associated with the control transistor device during a startup mode of the power converter circuit and to provide a control voltage based on an amplitude of the switching voltage during a normal operating mode. The switching controller generates the PWM signal in response to comparing the control voltage and a predetermined switching threshold voltage.
US10886844B2

A controller for compensating a voltage drop on a cable includes an output stage coupled to a channel configuration pin of the source device, a processor coupled to a power supply pin of a source device, and an error amplifier that includes a positive input coupled to a reference voltage, a negative input coupled to the channel configuration pin, a first output coupled to the output stage, and a second output coupled to the processor. The error amplifier is configured to supply a first signal to the output stage indicating a voltage difference between the reference voltage and a voltage at the channel configuration pin. The output stage is configured to supply an output current to the processor using the voltage drop and a stored current determined using the first signal. The processor is configured to generate a compensated supply voltage on the power supply pin using the output current.
US10886835B2

An electrical circuit and a method for regulating current and providing a circuit breaker to the electrical circuit. The circuit includes a bidirectional cell including a set of forward switches for power flow during a forward mode of operation and a set of reverse switches for providing reverse power flow during a reverse mode of operation, a control inductor for controlling current flow during the reverse mode of operation, and a voltage clamping switch configured to provide the control inductor in the circuit during the reverse mode of operation and remove the control inductor from the circuit during the forward mode of operation. The circuit is operated in at least the reverse mode of operation.
US10886834B1

A power converter and a method for receiving an input voltage and providing an output voltage is presented. The power converter has a switching circuit to generate the output voltage. The switching circuit has a first switch, a switch control circuit arranged to selectively operate the first switch in a first state or a second state. There is a ripple reduction circuit to set a first state duration based on a property of a load current. The load current is a current that the power converter provides to a load that is coupled to the output voltage.
US10886833B2

A switch mode power supply controller includes a switch terminal adapted to be coupled to an inductor that drives a load, high- and low-side switches a pulse width modulation (PWM) circuit, and a current monitor circuit. The PWM circuit is coupled to a feedback terminal for receiving a feedback signal, and alternatively drives the high-side switch and the low-side switch with a duty cycle set using the feedback signal to regulate an output voltage to a desired level in a work mode, and keeps both the high-side switch and the low-side switch non-conductive in a non-work mode. The current monitor circuit provides a current monitor signal representative of a current driven from the inductor to the load, wherein the current monitor circuit forms the current monitor signal by measuring an inductor current during a work mode, and by emulating the inductor current during a non-work mode.
US10886832B2

A multi-level inverter having one or more banks, each bank containing a plurality of low voltage MOSFET transistors. A processor configured to switch the plurality of low voltage MOSFET transistors in each bank to switch at multiple times during each cycle.
US10886830B2

Magnetic clutch arrangement for connecting an output shaft (1) of a drive (10) to a drive shaft (2) of a working machine (20), —having a hub (11, 21), —the hub (11, 21) has a hollow space (12, 22); —a first set of magnets (13, 23) is arranged in the hollow space (12, 22); —having a cardan shaft head (14, 24) which is arranged in the hollow space (12, 22) in the hub (11, 21); —a second set of magnets (15, 25) is arranged on the circumference of the cardan shaft head (14, 24); —the cardan shaft head (14, 24) and the hub (11, 21) are coupled either to the drive shaft (2) or output shaft (1) so as to transmit torque; the cardan shaft head (14, 24) is tilted through an angle α in the hollow space (12, 22) of the hub (11, 21), so that an asymmetrical gap (50) is formed between the hub (11, 21) and the cardan shaft head (14, 24).
US10886823B2

A first terminal portion of a first terminal wire of one divisional coil, and a second terminal portion of a second terminal wire of another divisional coil, extend from the entrance side or the bottom side of a slot so as to be directed upward in the axial direction and arranged side by side in the radial direction of a stator on the upper side in the axial direction of a stator core. The end of the first terminal portion and the end of the second terminal portion are joined to each other by a joining part. At least one of the first terminal portion and the second terminal portion leading to the joining part has an engagement portion for positioning the first terminal portion and the second terminal portion with each other in the circumferential direction and the radial direction.
US10886811B2

Provided is a stator assembly including: i) a first stator segment, ii) a second stator segment, wherein the first stator segment and the second stator segment being arranged along a circumferential direction of the stator assembly, and wherein the first stator segment and the second stator segment are located adjacent to each other and are separated by a gap. The stator assembly further including: iii) at least one first coil set of a first multi-phase coil system, and iv) at least one second coil set of a second multi-phase coil system, wherein each coil set includes at least one coil for each phase of the respective multi-phase coil system. Each stator segment includes a first busbar arrangement having first busbar elements, and a second busbar arrangement having second busbar elements, each busbar element being assigned to one phase.
US10886810B2

To provide a brushless motor in which a coil winding can be wound uniformly even when there is a difference in the distance between tooth tips of a plurality of pole teeth disposed in the circumferential direction of an annular part of a stator core so as to project in the radial direction. A guide core in which the distance between adjacent tooth tips of pole teeth is uniform and the tooth tips are symmetric with respect to the shaft lines in the radial direction is laminated integrally with a stator core in which a plurality of pole teeth is disposed in the circumferential direction of an annular part so as to project in the radial direction, and the distance in the circumferential direction between adjacent tooth tips is not uniform.
US10886803B2

This axial gap-type rotary electrical machine has: a stator in which a plurality of core units each configured from a core, a coil, and a bobbin are disposed, centered around a rotating shaft, in an annular shape along the inner circumferential surface of a housing; and a rotor that is face-to-face with a cross-sectional surface of the core through a predetermined gap in a radial direction of the rotating shaft. The bobbin is formed in a cylindrical shape, has flange parts extending a predetermined amount in the outer circumferential direction at the top and bottom of the cylindrical shape, is provided with notch sections on the tip part in the inner circumferential direction of the flange part of the bobbin, and forms an acute angle. In addition, approximately circular notch sections are formed on adjacent side surface portions of the bobbin in the outer circumferential direction of the bobbin. Accordingly, when forming the stator by means of molding, a resin mold is made to easily flow, and damage to the bobbin of the core unit can be avoided.
US10886796B2

A stator arrangement for an axial-flow machine includes a stator having stator teeth circumferentially distributed concentrically and axially separated from a rotor by an air gap. The stator teeth have two axially-opposite end portions and a tooth core therebetween. Each tooth core is wound with at least one coil winding. The first end portion facing the rotor forms a tooth tip having a tip cross-sectional area larger than the core cross-sectional area. The second end portion, turned away from the rotor, forms a tooth root, having a root cross-sectional area, which is joined to a reflux plate. The tooth tip of each stator tooth as well as the reflux plate respectively has at least one recess for at least one tooth securing device, and each stator tooth is securely joined by the at least one tooth securing device to the reflex plate in at least axial direction.
US10886795B2

A stator comprises multiple, stacked laminations, which collectively define a core having a number of posts arranged circumferentially about the core. Each post extends into two prongs defining a first slot between the prongs. The spacing between each posts and its two prongs defines a second slot having a radially inner and outer slot. The outer slot geometry has an increasing width extending radially outward from the radially inner end, and transitioning to a decreasing width extending to the radially outer end.
US10886790B2

A reconfigurable electromagnetic wave shielding filter is provided in a wireless charger for a vehicle and capable of selectively shielding an electromagnetic wave (EMI noise) that interferes with an AM broadcast band, an electromagnetic wave that interferes with a FM broadcast band, and an electromagnetic wave that interferes with a DMB broadcast band. A wireless charger for a vehicle includes the reconfigurable electromagnetic wave shielding filter and a control method thereof, in which broadcast information being received by the user is collected, and then, an electromagnetic wave that interferes with a broadcast band corresponding to the collected broadcast information is shielded, thereby to allow the user to listen to the broadcast without noise.
US10886787B2

A power supply apparatus, that can wirelessly supply power to a plurality of power receiving apparatuses, comprises: a plurality of antennae; and a control unit, wherein the control unit carries out control so that information pertaining to sending timings of calibration signals is sent, via the plurality of antennae, to the plurality of power receiving apparatuses; the control unit carries out control so that calibration signals sent from the plurality of power receiving apparatuses are received via the plurality of antennae; and the control unit controls an output of each antenna based on the calibration signals sent from the plurality of power receiving apparatuses so that power is supplied wirelessly to the plurality of power receiving apparatuses from corresponding ones of the plurality of antennae.
US10886783B2

A wireless power transmission apparatus includes: an alternating current (AC) power output to convert input power into AC power and output the AC power; and a power transmitter including a plurality of resonators. The power transmitter receives the AC power and wirelessly transmits the AC power in a first operating mode in which two of the resonators are connected in series and the two resonators transmit the AC power, and in a second operating mode in which one of the resonators transmits the AC power.
US10886781B2

A wireless power transmitting device includes a plurality of coils and respective wireless power transmitting circuitry coupled to each coil. The wireless power transmitting circuitry coupled to each coil may include an inverter and adjustable circuitry that is configured to mitigated radiated emissions in nominally passive coils in the power transmitting device. The wireless power transmitting circuitry coupled to each coil in the wireless power transmitting device may include adjustable circuitry coupled to an inverter output terminal in parallel or in series with the coil. The adjustable circuitry may have a variable capacitance that is controlled based on whether the coil is in an active or passive mode. The capacitance of the adjustable circuitry may be varied in a repeating cycle when the coil is in a passive mode. The adjustable circuitry may include one or more capacitors coupled between the inverter output terminal and ground.
US10886779B2

A method for controlling a supply of at least one load with voltage and/or electric current through an electric network.
US10886778B2

The present disclosure provides a remote monitoring system and related method for solar power generation device, including: transmitting electrical parameters and environmental parameters collected by a plurality of solar power generation devices to a computing device; and transmitting the electrical parameters and the ambient parameters by the computing device to a server through an embedded communication module disposed within the computing device, wherein the embedded communication module is an industrial-grade embedded 3G/4G communication module and can withstand temperatures of at least 70° C. Therefore, the remote monitoring system and related method according to the present disclosure can solve the problem of overheating of the equipment.
US10886777B1

A back-feed protection circuit includes input circuits and a control circuit. Each input circuit includes an input for receiving an input DC voltage. The control circuit is configured to enable one of the first input circuit and the second input circuit having the highest input DC voltage, and disable the other input circuit to substantially prevent current from back feeding to the first input circuit and/or the second input circuit. Each input circuit additionally and/or alternatively includes a positive rail, a reference rail and a plurality of switching devices. A set of the switching devices are coupled in series in the positive rail of each input circuit, and another set of the switching devices are coupled in series in the reference rail of each input circuit. Other example back-feed protection circuits, and electric power supplies including back-feed protection circuits are also disclosed.
US10886776B1

Power distribution systems having a bi-directional link for delivery of power between each other are disclosed. According to an aspect, a PDU includes a first power inlet configured to receive electric power from a power source. The PDU includes a second power inlet configured to receive electric power from another power distribution unit. The PDU also include an electric power router configured to determine whether the power source is in a fault condition for delivering electric power to the first power inlet. Further, the electric power router is configured to communicatively engage the other PDU for managing receipt of electric power from the other PDU based on the fault condition. The electric power router is configured to receive, at the second power inlet, electric power from the other PDU. The electric power router is also configured to route, to power outlets, the electric power received from the other PDU.
US10886775B2

An active multi-module switching (MMS) system provides at least Tier-III level reliability to a data center using a UPS system with only N+1 redundancy. Only one additional UPS module is provided over the total number of UPS modules required to fully power the loads. The active MMS system includes a controller, a control circuit, and a number of distribution units each having electrically operated circuit breakers and sensor components. The active MMS system operates to control the switching components on each of the UPS modules as well as to selectively connect/disconnect individual UPS modules from MMS operation. This allows for disconnection of a UPS module from the critical load bus whenever maintenance on the UPS module is required.
US10886769B2

An electronic device and methods for inductively charging an electronic device using another external electronic device. The electronic device may include an enclosure, a battery positioned within the enclosure, and an inductive coil coupled to the battery. The inductive coil may have two or more operational modes, including a power receiving operational mode for wirelessly receiving power and a power transmitting operational mode for wirelessly transmitting power. The electronic device may also have a controller coupled to the inductive coil for selecting one of the operational modes.
US10886766B2

A method, an apparatus and a device for charging a battery are provided. The method may include: defining a charging current In for an Nth charging stage of a charging process based on charging capability of the battery, wherein InVn-1 and Vn is smaller than a theoretical charge cutoff voltage Vmax; in case that the N-1th charging stage is not a last charging stage, charging the battery with In-1 during the N-1th charging stage and proceeding to the Nth charging stage when a voltage across the battery reaches Vn-1; and in case that the N-1 th charging stage is the last charging stage, charging the battery with In-1 during the N-1th charging stage and stopping charging when the voltage across the battery reaches Vn-1.
US10886764B2

A power tool includes: a battery connecting part to which one of a first battery pack and a second battery pack having capacity smaller than that of the first battery pack is detachably attachable; a motor driven by electric power supplied from the battery pack; current detection means configured to detect a discharge current flowing from the battery pack to the motor; cut-off controlling means configured to cut off the discharge current when the discharge current becomes equal to or larger than a current threshold; and battery type discrimination means configured to discriminate the battery pack connected to the battery connecting part. The current threshold when the second battery pack is connected to the battery connecting part is lower than that when the first battery pack is connected to the battery connecting part.
US10886762B2

A method for conducting an operation including a power tool battery pack. The battery pack can include a housing, a first cell supported by the housing and having a voltage, and a second cell supported by the housing and having a voltage. The battery pack also can be connectable to a power tool and be operable to supply power to operate the power tool. The method can include discharging one of the first cell and the second cell until the voltage of the one of the first cell and the second cell is substantially equal to the voltage of the other of the first cell and the second cell.
US10886761B1

A mobile phone cover is provided comprising: a holder 120, 1120, 2120, 3120 for receiving and retaining a mobile phone 108, the mobile phone comprising an energy supply; a portable charging device 106, 1106, 2106, 3106 having two or more charging stations 110, 1110, 2110, 3110, each charging station 110, 1110, 2110, 3110 being configured and arranged for receiving and retaining a rechargeable instrument 104, the rechargeable instrument 104 comprising an energy storage; the portable charging device 106, 1106, 2106, 3106 being further configured and arranged: to transfer energy, in use, from the energy supply of the mobile phone 108, placed in the holder, to the two or more charging stations 110, 1110, 2110, 3110; and to transfer energy, in use, from the charging stations 110, 1110, 2110, 3110 to the energy storage of the rechargeable instrument 104 placed in the respective charging station 110, 1110, 2110, 3110. By providing a portable charging device in a mobile phone case, there is a reduced risk that an instrument will not work properly or be inoperable. There may also be lower chance that the user will forget to take the rechargeable instruments when they are travelling and/or away from home.
US10886752B2

A battery charger controller is configured to add a compensation current in the feedback control loop such that the output voltage varies with the output current to compensate charging cable voltage drop. In some embodiments, the output voltage is also proportional to a compensation resistor. Therefore, cable voltage drop compensation can be adjusted using a resistor that is external to the controller IC. The external resistor may be one of the feedback resistors connected at a voltage feedback pin. In another embodiment, the adjustable resistor is the resistor between the feedback resistors and the voltage feedback pin. In still another embodiment, the adjustable resistor is the resistor in parallel with a compensation capacitor. In embodiments of the invention, adjusting the resistance of the external compensation resistor can change the voltage drop compensation and allow the power supply to meet requirements of different charging cable applications.
US10886750B2

An apparatus for managing energy input is provided. The apparatus has a container with an interior that houses an energy ranking system, an energy management system and a storage device. The container has at least two power input connections and a power output connection. Each of the at least two power input connections is connectable to a power generation system. The power output is connectable to a load. The energy ranking system has at least two power inputs in communication with the at least two power input connections and a power output. The energy ranking system selects at least one of the at least two power generation systems for providing power to an energy management system. The energy ranking system selects at least one of the power generation systems based upon a predetermined set of parameters. The energy management system has a power input in communication with the power output of the energy ranking system and a power output in communication with the power output connection of the container. The storage device is provided in communication with the energy management system.
US10886747B2

According to one embodiment, a power generation element includes a first conductive layer, a second conductive layer, a first member provided between the first conductive layer and the second conductive layer, and a second member separated from the first member and provided between the first member and the second conductive layer. The first member includes a first region including Alx1Ga1-x1N (0≤x1<1), and a second region including Alx2Ga1-x2N (x1 direction of the first member has a component in an orientation from the first conductive layer toward the second conductive layer.
US10886742B2

Approaches for managing and maintaining a state of charge of an energy storage device by adjusting (biasing) responses to electrical grid operator commands to perform ancillary services are disclosed. In embodiments, methods and systems regulate a set point regulation in an energy system. In an embodiment, a method determines when the set point needs to be changed, calculates a new set point, and moves the output of the system from an old set point to the new set point at a defined ramp rate. The method then incorporates, as part of a set point algorithm, the capability to restore the energy storage device to a desirable state of charge (SOC). Embodiments implement Dynamic Bias, SOC and Signal Bias Range Maintaining, Operational Limits, and Fixed Signal Bias algorithms and perform Intelligent Algorithm Selection to manage and maintain the SOC of an energy storage device by biasing responses to grid operator commands.
US10886738B2

A device includes a connection unit, a load unit, a voltage detection unit, and a determination unit. The connection unit is connected to a power supply apparatus. The load unit operates as a constant power load. The voltage detection unit detects a first output voltage of the power supply apparatus when the load unit operates in a first operation mode, and detects a second output voltage of the power supply apparatus when the load unit operates in a second operation mode. The determination unit determines a type or an output capacity of the power supply apparatus, based on the detected first output voltage and the detected second output voltage.
US10886734B2

An apparatus is provided for performing validation, estimation, and editing (VEE) on interval based energy consumption streams. The apparatus includes a VEE processor and a VEE configuration engine. The VEE processor executes VEE rules on each of the interval based energy consumption streams within a specified time period to generate and store corresponding post VEE readings that are stored in a post VEE readings data stores. The post VEE readings include tagged energy consumption data sets that are each associated with a corresponding one of the interval based energy consumption streams. Each of the tagged energy consumption data sets has groups of contiguous interval values tagged as having been validated. The VEE configuration engine reads the post VEE readings upon initiation of an event and, for the each of the tagged energy consumption data sets, creates anomalies having a plurality of different durations using only the groups of contiguous interval values, and generates estimates for the anomalies by employing estimation techniques and, for each of the different durations, selects one of the estimation techniques for subsequent employment when performing VEE of subsequent energy consumption data for the corresponding one of the p interval based energy consumption streams.
US10886725B2

The present disclosure relates to a switching power supply, an over-temperature control and protection method, and a power control method. The switching power supply includes: a converter module including at least one main power switch; a direction detection module configured to obtain installation direction information of the switching power supply; and a process module configured to perform a preset operation in accordance with the installation direction information of the switching power supply. The present disclosure may realize power control of the switching power supply and meet over-temperature protection requirements under various installation directions.
US10886722B2

An arc fault current detector for an electricity supply having at least two supply conductors (P1, P2) comprises a coil (L1) disposed adjacent to but not surrounding at least one of the conductors and inductively coupled thereto. A circuit (14) is connected to the coil for detecting a signal induced in the coil having frequency characteristics corresponding to an arc fault in the supply.
US10886710B2

A pre-chamber spark plug for an internal combustion engine having: a body with a passage in which an insulator is fastened and a center electrode protrudes; at least one ground electrode extending in a straight line forms a spark gap with the center electrode; a pre-chamber-forming cap which delimits a pre-chamber and shields the center and ground electrodes from a combustion chamber after the spark plug has been installed in the engine, wherein the cap has at least one opening which permits a gas exchange between the pre-chamber and the space outside the pre-chamber. The ground electrode includes a reinforcing component welded to an end surface of a supporting component, and the supporting component is either welded to an end surface of the body or is welded to a step that is formed on the end surface.
US10886702B2

A vertical-cavity surface-emitting laser for near-field illumination of an eye includes a semiconductor substrate, a first reflector, a mesa region, a first electrical contact, and a second electrical contact. The first reflector is disposed on a first side of the semiconductor substrate and the mesa region is disposed on the first reflector. The mesa region includes a second reflector and an active region, where the mesa region is configured to generate a diverging infrared beam. The first electrical contact is disposed on a second side of the semiconductor substrate, opposite the first side, for electrically coupling to the first reflector. The second electrical contact is also disposed on the second side of the semiconductor substrate for electrically coupling to the second reflector.
US10886691B2

A ring optical resonator is formed on a substrate. An outer circumferential surface of the resonator substantially confines one or more circumferential resonant optical modes. The resonator is positioned above a void formed in the substrate and is supported above the void by a portion of a material layer on the substrate that extends radially inward above the void from an outer circumferential edge of the void to the outer circumferential surface of the resonator. An optical waveguide can be integrally formed on the substrate and traverses a portion of the material layer above the void. The optical waveguide and the ring optical resonator are arranged and positioned so as to establish evanescent optical coupling between them. Q-factors of 108 or more have been achieved with a silica resonator and silicon nitride waveguide integrally formed on a silicon substrate.
US10886689B2

A structured light emitting module includes a light source and a diffractive optical component. The light source generates laser light. The diffractive optical component is arranged on an optical path of the laser light emitted by the light source for diffracting the laser light. There is no lens arranged on an optical path of the laser light emitted by the light source.
US10886688B1

A laser pointing apparatus and a method of calibration therefor utilizing a precision machined, highly reflective alignment cube to precisely calibrate the laser pointing system is provided. The calibration method can allow the calculation of the position of a transmitted beam after it leaves an azimuth mirror to high degree of accuracy over large distances.
US10886676B2

A connection system for a quantum computer that employs constant impedance connectors with attenuation or filtering components or both embedded therein or within an adaptor removably insertable within an adaptor housing for use in a cryogenically cooled quantum computer. The connection system provides a higher density of cables traversing through a hermetic sealed top plate, and which are accessible to chill blocks to reduce the thermal energy from the signal lines. Attenuators or filter circuits are embedded in the constant impedance connector housings, or provided in adaptors that connect on each end to form mating constant impedance connections, in order to reduce signal strength as the signal progresses through the cryogenic environment and to remove extraneous electrical signal noise.
US10886674B2

The invention relates generally to an illuminable wall socket plate for replacing existing wall socket plates in one simple installation step. The illuminable wall socket plate obtains electric current from a socket to power a light by connecting metal tabs on the back side of the illuminable wall socket plate to socket terminals, and transferring electric current from the socket terminals to a light in the wall socket plate through conductive material, in accordance with the invention described herein.
US10886671B2

An electronic power connector. The electronic power connector includes at least one contact configured to electrically connect a power supply to a load, an insulating sleeve, and an electronic assembly. The insulating sleeve includes a sensor slot configured to receive a sensor and is configured to receive the at least one contact. The electronic assembly including a transformer winding configured to receive the at least one contact and sense a current.
US10886669B2

A substrate connector includes an insulative housing fixed onto a substrate, a first terminal electrically connected to a first communication line of a communication cable in the inside of the housing and electrically connected to a circuit of the substrate on the outside of the housing, and a second terminal electrically connected to a second communication line of the communication cable in the inside of the housing and electrically connected to the circuit of the substrate on the outside of the housing. The housing includes a main body that is fixed onto the substrate, a terminal-retaining portion arranged in the inside of the main body, integrally formed with the housing, and retains the first and second terminals, and a shell-retaining portion including slit portions formed between the main body and the terminal-retaining portion and to which a shield shell surrounding the first and second terminals is inserted.
US10886668B1

An electrical connector assembly includes a dielectric connector housing having a cavity extending longitudinally therethrough and a shield terminal disposed within the cavity. The shield terminal has an attachment portion configured to receive a shield conductor of a coaxial cable and a connection portion configured to receive a cylindrical mating shield terminal. The connection portion defines a first cylindrical sector and a second cylindrical sector arranged opposite one another. The connection portion and the cavity cooperate to put the first and second cylindrical sectors in intimate contact with, and apply a compressive force to, the mating shield terminal when the mating shield terminal is inserted within the connection portion.
US10886658B2

Disclosed is a mobile socket device that can be quickly fixed and disassembled, including a socket and a fixed socket. The socket has a placement surface provided with a clamp hole, and at least one power collecting surface each provided with at least one set of jacks. The fixed seat has a receiving surface provided with a buckle buckled with the clamp hole, and a mounting surface suitable for being mounted to a carrier. The mobile socket device takes into account the advantages of both a fixed socket and a mobile socket. On the one hand, the socket can be fixed in any place at any time through the fixed socket. On the other hand, the socket can be removed from the fixed seat and used as a mobile socket. In addition, the socket and the fixed seat are connected by buckle connection, facilitating mounting and disassembly.
US10886657B2

Connector apparatus having a female connector assembly and a male connector assembly. The female connector assembly includes a female housing, a connector position assurance (CPA) member for assuring the engagement of the male connector assembly with the female connector assembly, and a first terminal position assurance (TPA) member for assuring that terminals for the female connector assembly are positioned properly. The female housing further includes a connector latch used to securely hold together a connector apparatus. The female housing has TPA protection ribs and CPA protection walls. The male housing has TPA protection ribs.
US10886647B2

According to some embodiments, a socket for an electronic device includes a housing and pins connected to the housing. The housing includes a base extending laterally and having an inner face and an outer face; a riser connected to the base and extending away from the outer face; a wall extending laterally, connected to the riser, and having an exterior face and an interior face that faces the outer face of the base; mounting ports extending through the base from the inner face to the outer face; and exit ports extending through the wall from the interior face to the exterior face. Each pin includes a portion extending at least partially though one mounting port; a portion extending between the base and the wall; and a portion extending through one exit port.
US10886642B2

An electrical connection for medium and high voltage switchgears includes an electrical terminal of a switchgear. An electrical contacting surface of the electrical terminal as first current carrying part is electrically connected with a contacting surface of an external electrical connector part as second current carrying part via a connecting system. The connecting system includes a stretch-bolt function, which is integrated in one of the current carrying parts. The stretch bolt function is provided with a male screw thread at the extending end, which is configured to be screwed into a female threaded hole of the second current carrying part.
US10886641B2

A copper busbar has at least one stepped hole for fastening a cable shoe vi a screw connection. The stepped hole extends from a first surface of the copper busbar to a second surface of the copper busbar. The stepped hole has at least a first region, a second region and a third region, wherein the first region of the stepped hole adjoins the first surface, with a radius of the stepped hole being constant over the length of the second region with the second radius value. The third region adjoins the second surface, wherein the third region has at least at the second surface a radius with a third radius value which is less than the second radius value.
US10886637B2

In a conductor crimping portion 3, a pair of crimping pieces 3c and 3d having a two-layer structure of an upper layer plate 3a and a lower layer plate 3b connecting the upper layer plate 3a is raised in a U-shape from both sides of a bottom portion 3e. A void 3g is formed inside a folded-back portion of the upper layer plate 3a from the lower layer plate 3b. In the conductor crimping portion 3, the crimping pieces 3c and 3d have a two-layer structure, and a conductor portion is elastically fixed and connection becomes strong due to the presence of the void 3g.
US10886634B2

A filter feeding network, including a dielectric substrate, where a surface of the dielectric substrate's one side is provided a microstrip line, and a surface of the dielectric substrate's other side is provided with a metal ground; the microstrip line includes first and second power division circuits, and first and second filter circuits; an input and output end of the first filter circuit are respectively connected to the first power division circuit's input and output end correspondingly, the second filter circuit's input and output end are respectively connected to the second power division circuit's input and output end correspondingly, and the input end of the first filter circuit and second filter circuit are in conduction with the metal ground; and first and second power division circuit's output end feeds at least two array antenna units for −45° polarization and +45° polarization respectively.
US10886630B2

An antenna module (1) includes an antenna array (100) that includes a plurality of radiation conductors (11) arranged at regular intervals in or on a dielectric substrate (14) and an RFIC (20) that is provided in or on the dielectric substrate (14) and that performs signal processing on a transmission signal transmitted by the antenna array (100) or a reception signal received by the patch antenna array (100). Each of the plurality of radiation conductors (11) has a transmission feeding point from which the transmission signal is transmitted to the RFIC (20) and a reception feeding point at which the reception signal is received from the RFIC (20).
US10886620B2

An antenna includes a dielectric substrate, a ground element, a feed element, a microstrip line, and a feed point. The ground element is disposed on a first surface of the dielectric substrate. The ground element includes a slit. The feed element is disposed on a second surface of the dielectric substrate. The microstrip line extends from the feed element toward the slit. The feed point is disposed on the second surface of the dielectric substrate, and connected to the feed element via the microstrip line. The feed point is positioned between the feed element and the slit, and disposed at an end of the microstrip line.
US10886618B2

An antenna apparatus includes a feed via, a patch antenna pattern which is electrically connected to a first end of the feed via, a plurality of first conductive array patterns, respectively disposed to be spaced apart from the patch antenna pattern and arranged to correspond to at least a portion of a side boundary of the patch antenna pattern, and a first conductive ring pattern spaced apart from the patch antenna pattern and the plurality of conductive array patterns and configured to surround the patch antenna pattern and the plurality of conductive array patterns.
US10886602B2

There is disclosed a mobile terminal including a first case comprising a battery loading portion, a battery loaded in the battery loading portion, a second case coupled to the first case and configured to cover the battery, a coil antenna module arranged between the second case and the battery, and a controller electrically connected to the coil antenna module and configured to transmit and receive a signal or receive an electric power, wherein the coil antenna module includes an insulating sheet, a first coil arranged in a surface of the insulating sheet, a second coil arranged in the first coil, a third coil arranged in the second coil, and a magnetic sheet disposed on the surface of the insulating sheet, and ends of the first, second and third coils are arranged in the surface of the insulating sheet or dividedly arranged in both surfaces of the insulating sheet. The mobile terminal may realize the coil antenna module including a plurality of coils configured to perform diverse manners of wireless communication in a limited area.
US10886601B2

An electronic device includes an antenna, and a plate-shaped heat spreader including first and second metal layers that are stacked, a working fluid in an enclosed space interposed between the first and second metal layers, and a joint along which outer peripheral portions around the enclosed space are joined. The heat spreader includes an operational region in which the enclosed space is located and a quasi-operational region other than the enclosed space. The antenna is provided in the quasi-operational region in a plan view of the heat spreader.
US10886599B2

A plug-and-play antenna may be used with many different types of wireless communication devices. An antenna may be coupled to an impedance tuning component and a waveform generator. A calibration control module receives radio status information, controls the waveform generator to vary a response of the antenna, and tunes the impedance tuning component to match impedances between a radio and the antenna.
US10886598B2

An antenna module includes: a coil part including an antenna wiring disposed on an insulating substrate; a first magnetic part disposed on a first surface of the insulating substrate; and a second magnetic part disposed on a second surface of the insulating substrate, wherein the first magnetic part and the second magnetic part overlap with each other on a center region of the antenna wiring.
US10886590B2

An interposer that acts as a buffer zone between a transceiver IC and a dielectric waveguide interconnect is used to establish two well defined reference planes that can be optimized independently. The interposer includes a block of material having a first interface region to interface with an antenna coupled to an integrated circuit (IC) and a second interface region to interface to the dielectric waveguide. An interface waveguide is formed by a defined region positioned within the block of material between the first interface region and the second interface region.
US10886589B1

In accordance with one or more embodiments, a coupling system includes a transmitter configured to generate a first signal conveying first data. A coupler is configured to transmit the first signal as a first guided electromagnetic wave that is guided by at least a portion of a surface of a messenger wire that supports an overhead telephony cable, wherein the first guided electromagnetic wave propagates along the at least the portion of the surface of the messenger wire without requiring an electrical return path.
US10886588B2

An oscilloscope probe includes a tip network, a low-loss signal cable, and a terminating assembly. The tip network is connected to the signal cable and is configured to electrically connect to a device under test via a tip network node. The terminating assembly includes an amplifier, a feedback network and a terminating attenuator. The amplifier has an inverting input, a non-inverting input connected to ground, and an amplifier output configured to connect to an oscilloscope input. The feedback network is connected between the inverting input and the amplifier output. The terminating attenuator includes a first loop circuit and a second loop circuit. The first loop circuit is provided between the signal cable and the inverting input of the amplifier. The second loop circuit is provided between the signal cable, and ground. Resistance of terminating resistors in the loop circuits are selected to match characteristic impedance of the signal cable.
US10886577B2

A charging device includes: a power storage device including a plurality of assembled batteries connected to an inlet in parallel; a plurality of current sensors each configured to detect current flowing in a corresponding one of the plurality of assembled batteries; a plurality of relays each provided between a corresponding one of the plurality of assembled batteries and a corresponding one of the plurality of current sensors; and an ECU configured to perform offset learning to learn offset values of the plurality of current sensors. When the ECU determines that it is in one of first to fourth states, the ECU is configured to cut off one SMR relay in the plurality of SMR relays, and perform the offset learning for the current sensor corresponding to this SMR relay.
US10886574B2

An electrode for a secondary battery includes titanium-containing oxide as an active material. The median pore diameter of the electrode is 0.050 μm or more and 0.1 μm or less and pore surface area of the electrode is 4 m2/g or more and 8 m2/g or less, by mercury porosimetry.
US10886568B2

Aspects of embodiments of the present disclosure provide an electrolyte for a rechargeable lithium battery including a non-aqueous organic solvent, a lithium salt, and an additive, wherein the additive is a compound represented by Chemical Formula 1: The compound represented by Chemical Formula 1 and/or its oxide may participate in one or more electrochemical reactions to form a robust solid electrolyte interphase (SEI) film, and may also improve the stability of other electrolyte components against oxidative decomposition.
US10886563B2

A polymer solid electrolyte having high ion conductivity and interfacial stability is provided. An additive including an organic compound having a highest occupied molecular orbital (HOMO) energy of −8.5 eV or higher is used, which facilitates film formation in a positive electrode due to low oxidation potential. The resulting polymer solid electrolytes have enhanced film formation on the surface of a positive electrode surface and enhanced interfacial stability, while maintaining battery performance. Lithium secondary battery having enhanced performance are also described.
US10886557B2

An opening is formed in an accommodating case of a fuel cell stack. Flat cables are led out of the accommodating case through the opening. The flat cables pass through a grommet covering the opening. The grommet is positioned by a seal plate (positioning member) attached to the accommodating case.
US10886549B2

Simplified methods are disclosed for preparing a catalyst coated membrane that is reinforced with a porous polymer sheet (e.g. an expanded polymer sheet) for use in solid polymer electrolyte fuel cells. The methods involve forming a solid polymer electrolyte membrane by coating membrane ionomer solution onto a first catalyst layer and then applying the porous polymer sheet to the membrane ionomer solution coating, while it is still wet, such that the membrane ionomer solution only partially fills the pores of the porous polymer sheet. A second catalyst ink is then applied which fills the remaining pores of the porous polymer sheet. Not only are such methods simpler than many conventional methods, but surprisingly this can result in a marked improvement in fuel cell performance characteristics.
US10886548B2

Systems, methods, and apparatus configured for the mitigation of hydrogen accumulation within electrochemical systems are generally described. The systems, methods, and apparatus described herein can be, according to certain embodiments, configured to be part of an electrochemical system in which hydrogen is generated (e.g., as a reaction byproduct).
US10886546B2

The invention relates to a flushing arrangement for flushing (purging) a fuel cell unit on its anode side and/or an electrolysis unit on its cathode side. The flushing arrangement has a flushing channel with a first and a second flushing channel section, which can be fluidically connected to one another via a purge valve of the flushing arrangement, and with a buffer store which is fluidically connected to the flushing channel and downstream of the purge valve, and which has a storage chamber that is provided for intermediate storage of a fluid mass to be flushed in a pulse-type manner with a flush mass flow from the fuel cell unit and/or from the electrolysis unit, so that this fluid mass can be discharged with a discharge mass flow, which is smaller than the flush mass flow, out of an outflow element fluidically connected to the second flushing channel section.
US10886544B2

A fuel cell system FCS includes a fuel cell 10, a high voltage circuit 21 for driving an electromotor 42, and a relay 41 for electrically connecting or blocking the fuel cell 10 to or from the high voltage circuit 21. A control unit 50 obtains insulation decrease information in accordance with a request for starting the fuel cell, and performs, when a specified insulation decrease occurred region is not a fuel cell region SE1 including the fuel cell and the cooling circuit, conductivity reduction process on cooling liquid using a conductivity reduction unit 113 before having a relay 41 connect, and has the relay 41 connect after completing the conductivity reduction process.
US10886542B2

The invention relates to a fuel cell (2) comprising at least one membrane electrode assembly (10) and at least one flow field plate (40) comprising a separator plate (50). The flow field plate (40) has at least one structural part (51, 52) which comprises a base body (60) in which recesses (65) are introduced, and vanes (61, 62) which extend from sides (70, 72) of the recesses (65) and extend to the at the least one membrane electrode assembly (10).
US10886538B2

A method for preparing particles comprising a material suitable for catalysing oxygen reduction or hydrogen oxidation, the particles being grafted by grafts consisting of at least one specific polymer comprising at least one repeating styrene unit bearing at least one proton-conducting group.
US10886534B2

A non-aqueous electrolyte secondary battery that contains a silicon material as a negative-electrode active material has improved initial charge/discharge efficiency. A negative-electrode active material particle (10) according to an embodiment contains a base particle (13), which includes a lithium silicate phase (11) represented by Li2zSiO(2+z) {0
US10886523B2

A method for electroplating (or electrodeposition) a lithiated transition metal oxide composition using low purity starting precursors. The method includes electrodepositing the electrochemically active material onto an electrode in an electrodeposition bath containing a non-aqueous electrolyte. The lithiated metal oxide can be used for various applications such as electrochemical energy storage devices including high power and high-energy lithium-ion batteries.
US10886514B2

The present invention relates to a separator for a lithium secondary battery, including a porous resin comprising one or more polar functional groups selected from the group consisting of —C—F; and —C—OOH and —C═O on a surface thereof, wherein, among the polar functional groups, a molar ratio of —C—OOH and —C═O to —C—F ranges from 0.2:0.8 to 0.8:0.2, and a method of manufacturing the same.
US10886508B2

One embodiment provides a device, including: a battery; and a tape strip comprising: a top surface; a bottom surface; and at least one elevatable section, wherein the at least one elevatable section comprises an area, situated in the top surface, containing an adhesive; wherein the top surface is composed of a non-adhesive substance on all portions of the top surface not associated with the area and wherein the bottom surface is composed of the adhesive on all portions of the bottom surface not associated with the at least one elevatable section; wherein the battery is adhered to the top surface of the tape strip via an adhesive connection between the area containing the adhesive and a bottom surface of the battery, wherein the tape strip is adhered to the device via another adhesive connection between the bottom surface of the tape strip and an inner portion of the device.
US10886490B2

Provided is an organic light-emitting device including a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode and including an emission layer, the organic layer including a low work function metal compound.
US10886484B2

An organic thin film photovoltaic device module includes: a substrate; a first and second transparent electrode layers disposed on the substrate; an organic layer disposed on the substrate and the first and second transparent electrode layers; a plurality of dot-shaped contact holes formed so as to pass through up to the second transparent electrode layer in a perpendicular-to-plane direction with respect to the organic layer; a metal electrode layer disposed on the organic layer and on the second transparent electrode layer via the dot-shaped contact hole; and a passivation layer disposed on the metal electrode layer. There are provided: the organic thin film photovoltaic device module having satisfactory appearance without deteriorating appearance thereof and having the improved structure of the portion jointed in series; and the electronic apparatus.
US10886481B2

A display substrate, a manufacturing method thereof, and a display device are provided. The display substrate includes: a base substrate including a main portion and an edge portion located on at least one side of the main portion; a first pixel located on the edge portion and including a first light-emitting surface; and an angle-adjusting portion located between the first pixel and the edge portion and configured to provide an included angle between the first light-emitting surface and the edge portion at a position where the first pixel is located, the included angle being not zero.
US10886474B2

The present disclosure relates to an organic electroluminescent compound, and an organic electroluminescent material and an organic electroluminescent device comprising the same. The organic electroluminescent compound of the present disclosure has excellent color purity, solubility, and thermal stability. By comprising the organic electroluminescent compound and the organic electroluminescent material of the present disclosure, an organic electroluminescent device showing low driving voltage, excellent current and power efficiencies, and significantly improved lifespan can be provided.
US10886464B2

A metal liner is deposited conformally to a pore within a first dielectric material of a semiconductor device. The pore extends through the first dielectric material to a top surface of a first metal electrode. The metal liner is etched such that the metal liner only substantially remains on sidewalls of the pore. A phase change material is selectively deposited within the pore of the first dielectric layer to substantially fill the pore with the phase change material. The selective deposition of the phase change material produces a growth rate of phase change material on the metal liner at a substantially greater rate than a growth rate of the phase change material on exposed surfaces of the first dielectric material.
US10886463B2

A method of fabricating a magnetoresistive bit from a magnetoresistive stack includes (a) etching through at least a portion of a thickness of the surface region to create a first set of exposed areas in the form of multiple strips extending in a first direction, and (b) etching through at least a portion of a thickness of the surface region to create a second set of exposed areas in the form of multiple strips extending in a second direction. The first set of exposed areas and the second set of exposed areas may have multiple areas that overlap. The method may also include, (c) after the etching in (a) and (b), etching through at least a portion of the thickness of the magnetoresistive stack through the first set and second set of exposed areas.
US10886461B2

A conductive via layer is deposited on a bottom electrode, then patterned and trimmed to form a sub 20 nm conductive via on the bottom electrode. The conductive via is encapsulated with a first dielectric layer, which is planarized to expose a top surface of the conductive via. A MTJ stack is deposited on the encapsulated conductive via wherein the MTJ stack comprises at least a pinned layer, a barrier layer, and a free layer. A top electrode layer is deposited on the MTJ stack and patterned and trimmed to form a sub 30 nm hard mask. The MTJ stack is etched using the hard mask to form an MTJ device and over etched into the encapsulation layer but not into the bottom electrode wherein metal re-deposition material is formed on sidewalls of the encapsulation layer underlying the MTJ device and not on sidewalls of a barrier layer of the MTJ device.
US10886454B2

Systems and techniques facilitating antenna-based thermal annealing of qubits are provided. In one example, a radio frequency emitter, transmitter, and/or antenna can be positioned above a superconducting qubit chip having a Josephson junction coupled to a set of one or more capacitor pads. The radio frequency emitter, transmitter, and/or antenna can emit an electromagnetic signal onto the set of one or more capacitor pads. The capacitor pads can function as receiving antennas and therefore receive the electromagnetic signal. Upon receipt of the electromagnetic signal, an alternating current and/or voltage can be induced in the capacitor pads, which current and/or voltage thereby heat the pads and the Josephson junction. The heating of the Josephson junction can change its physical properties, thereby annealing the Josephson junction. In another example, the emitter can direct the electromagnetic signal to avoid unwanted annealing of neighboring qubits on the superconducting qubit chip.
US10886452B2

Systems, methods, and devices of the various embodiments provide for microfabrication of devices, such as semiconductors, thermoelectric devices, etc. Various embodiments may include a method for fabricating a device, such as a semiconductor (e.g., a silicon (Si)-based complementary metal-oxide-semiconductor (CMOS), etc.), thermoelectric device, etc., using a mask. In some embodiments, the mask may be configured to allow molecules in a deposition plume to pass through one or more holes in the mask. In some embodiments, molecules in a deposition plume may pass around the mask. Various embodiments may provide thermoelectric devices having metallic junctions. Various embodiments may provide thermoelectric devices having metallic junctions rather than junctions formed from semiconductors.
US10886450B2

Disclosed is a thermoelectric composite material includes a thermoelectric material including crystal grains; and a MXene inserted at boundaries of the crystal grains consisting of the thermoelectric material. Accordingly, the thermoelectric composite material may have a reduced thermal conductivity and an increased electrical conductivity. Furthermore, mechanical properties of the thermoelectric composite material may be improved. Thus, the thermoelectric composite material may improve the thermoelectric ability of a thermoelectric module including the same. A method of manufacturing the thermoelectric composite material includes coating MXene on a surface of a thermoelectric material powder including crystal grains; and sintering the thermoelectric material powder coated with the MXene to form a sintered body including the MXene inserted at boundaries of the crystal grains consisting of the thermoelectric material.
US10886440B2

A structure according to embodiments of the invention includes a light emitting device for emitting light having a first peak wavelength. A wavelength converting layer is disposed in a path of light emitted by the light emitting device. The wavelength converting layer absorbs light emitted by the light emitting device and emits light having a second peak wavelength. The wavelength converting layer includes a mixture of a wavelength converting material, a transparent material, and an adhesive material, wherein the adhesive material is no more than 15% of the weight of the wavelength converting layer.
US10886422B2

This invention concerns a grouped nanostructured unit system forming a metamaterial within the silicon and the manufacturing process to arrange them therein in an optimal manner. The nanostructured units are grouped and conditioned in an optimal arrangement inside the silicon material. The process comprises the modification of the elementary crystal unit together with the stress field, the electric field and a heavy impurity doping in order to form a superlattice of nanostructured units grouped in an optimal arrangement so as to improve the efficiency of the light-to-electricity conversion by means of efficient use of the kinetic energy of hot electrons and efficient collection of all electrons generated within the converter.
US10886420B2

The wafer-level manufacturing method makes possible to manufacture ultrathin optical devices such as opto-electronic modules. A clear encapsulation is applied to an initial wafer including active optical components and a wafer-size substrate. Thereon, a photostructurable spectral filter layer is produced which defines apertures. Then, trenches are produced which extend through the clear encapsulation and establish sidewalls of intermediate products. Then, an opaque encapsulation is applied to the intermediate products, thus filling the trenches and producing aperture stops. Cutting through the opaque encapsulation material present in the trenches, singulated optical modules are produced, wherein side walls of the intermediate products are covered by the opaque encapsulation material. The wafer-size substrate can be attached to a rigid carrier wafer during most process steps.
US10886419B2

A method includes providing a semiconductor structure comprising a varactor region and a field effect transistor region. The varactor region includes a body region in a semiconductor material that is doped to have a first conductivity type. A gate-first process is performed by forming a gate stack over the semiconductor structure. The gate stack includes a layer of gate insulation material and a layer of work function adjustment metal positioned over the layer of gate insulation material. The gate stack is patterned to define a first gate structure over the varactor region and a second gate structure over the field effect transistor region. A source region and a drain region are formed in the field effect transistor region adjacent the second gate structure. The source region and the drain region are doped to have a second conductivity type opposite to the first conductivity type.
US10886410B2

Provided is a thin film transistor, including: a conductive light shielding layer; a metal oxide layer arranged on the light shielding layer; a buffer layer, an active layer, a gate insulating layer, a gate electrode, and an interlayer insulating layer arranged in sequence on the metal oxide layer, the interlayer insulating layer and the buffer layer comprising a first via hole and a second via hole for exposing the active layer, and a third via hole for exposing the metal oxide layer, in which a portion of the metal oxide layer exposed through the third via hole is a conductive portion, and other portions are insulative; and a source electrode and a drain electrode arranged on the interlayer insulating layer, in which the source electrode is connected to the active layer through the first via hole, and the drain electrode is connected to the active layer through the second via hole and connected to the conductive portion through the third via hole.
US10886404B2

A semiconductor device includes a first active region that extends on a substrate in a first direction, a second active region that extends in parallel with the first active region, an element isolation region between the first and second active regions, a gate structure that extends in a second direction different from the first direction, and intersects the first and second active regions, a lower contact spaced apart from the gate structure in the first direction, the lower contact being on the first active region, the element isolation region, and the second active region, and an upper contact on the lower contact between the first active region and the second active region. A width of the lower contact in the first direction that is on the first active region m narrower than a width of the lower contact in the first direction that is on the element isolation region.
US10886403B2

A self-limiting etch is used to provide a semiconductor base located between a semiconductor substrate and a semiconductor fin. The semiconductor base has an upper portion, a lower portion and a midsection. The midsection has a narrower width than the lower and upper portions. A bottom source/drain structure is grown from surfaces of the semiconductor substrate and the semiconductor base. The bottom source/drain structure has a tip region that contacts the midsection of the semiconductor base. The bottom source/drain structures on each side of the semiconductor fin are in close proximity to each other and they have increased volume. Reduced access resistance may also be achieved since the bottom source/drain structure has increased volume.
US10886399B2

A semiconductor device, such as a laterally diffused metal-oxide-semiconductor (LDMOS) transistor, includes a semiconductor substrate in which a source region and a drain region are disposed. The drain region has a drain finger terminating at a drain end. A gate structure is supported by the semiconductor substrate between the source region and the drain region, the gate structure extending laterally beyond the drain end. A drift region in the semiconductor substrate extends laterally from the drain region to at least the gate structure. The drift region is characterized by a first distance between a first sidewall of the drain finger and a second sidewall of the gate structure, and the gate structure is laterally tilted away from the drain region at the drain end of the drain finger to a second distance that is greater than the first distance.
US10886397B2

A semiconductor device has an active region through which current flows and a termination structure region. At a front surface of a semiconductor substrate of a first conductivity type, a first semiconductor layer of the first conductivity type is provided. At a surface of the first semiconductor layer, a lower parallel pn structure is provided. At a surface of the lower parallel pn structure, an upper parallel pn structure is provided in the termination structure region and a first semiconductor region of a second conductivity type is provided in the active region. A width of an upper second column is wider than a width of a lower second column. An interval between the upper second columns is wider than an interval between the lower second columns. A thickness of the upper second column is thicker than a thickness of the first semiconductor region.
US10886391B2

Transistors and methods of forming the same include forming a fin that has an active layer between two sacrificial layers. Material is etched away from the two sacrificial layers in a region of the fin. A gate stack is formed around the active layer in the region. The active layer is etched after forming the gate stack to form a quantum dot.
US10886390B2

In a method of manufacturing a semiconductor device, a gate insulating film is formed at a first surface of a first semiconductor layer of a first conductivity type; a second semiconductor layer of a second conductivity type is formed at the first surface; a gate electrode is formed on the gate insulating film; the gate insulating film is selectively removed; a thermal oxide film is formed at a surface of the second semiconductor layer; a third semiconductor layer of the first conductivity type is selectively formed at the surface of the second semiconductor layer; an interlayer insulating film is formed on the thermal oxide film; a contact hole is selectively formed to expose the third semiconductor layer; a barrier metal is formed in the contact hole; and a metal plug is embedded in the contact hole on barrier metal by a CVD method that uses a metal halide.
US10886386B2

A dual width SOI FinFET is disclosed in which different portions of a strained fin have different widths. A method of fabrication of such a dual width FinFET entails laterally recessing the strained fin in the source and drain regions using a wet chemical etching process so as to maintain a high degree of strain in the fin while trimming the widths of fin portions in the source and drain regions to less than 5 nm. The resulting FinFET features a wide portion of the fin in the channel region underneath the gate, and a narrower portion of the fin in the source and drain regions. An advantage of the narrower fin is that it can be more easily doped during the growth of the epitaxial raised source and drain regions.
US10886377B2

The power semiconductor device includes: a first trench gate and a second trench gate in a stripe shape extending in one direction in parallel and spaced apart from each other in a substrate; a third trench gate in a ladder shape extending in a direction different from the one direction between the first trench gate and the second trench gate in the substrate; a first conductive type body area each disposed between the first trench gate, the second trench gate and the third trench gate, respectively, in the substrate; a pair of first conductive type floating first areas surrounding each of bottom surfaces and at least one side of the first trench gate and the second trench gate in the substrate; and a first conductive type floating second area surrounding a bottom surface of the third trench gate in the substrate.
US10886370B2

A silicon carbide body includes a drift structure having a first conductivity type, a body region, and a shielding region. The body and shielding regions, of a second conductivity type, are located between the drift structure and a first surface of the silicon carbide body. First and second trench gate stripes extend into the silicon carbide body. The body region is in contact with a first sidewall of the first trench gate stripe. The shielding region is in contact with a second sidewall of the second trench gate stripe. The second sidewall has a first length in a lateral first direction parallel to the first surface. A supplementary region of the first conductivity type contacts one or more interface areas of the second sidewall. The one or more interface areas have a combined second length along the first direction, the second length being at most 40% of the first length.
US10886364B2

A reinforced vertical-NAND structure is provided. The reinforced vertical-NAND structure includes a first set of interleaved oxide and nitride layers formed into first and second vertical structures. The first vertical structure rises from a first section of a substrate and the second vertical structure rises from a second section of the substrate. The reinforced vertical-NAND structure also includes a reinforcing layer and a second set of interleaved oxide and nitride layers formed into third and fourth vertical structures. The reinforcing layer includes sheets, which are distinct and laid across respective tops of the first and second vertical structures, and bridges connecting the sheets. The third vertical structure rises from the sheet corresponding to the first vertical structure and the fourth vertical structure rises from the sheet corresponding to the second vertical structure.
US10886358B2

A display device, includes: a display area including an upper side, a lower side, a left side, a right side, and inclined corner portions where the upper, lower, left, and right sides meet; a demultiplexing circuit unit adjacent to the lower side of the display area and the corner portion connected thereto; and a scan transmission line which extends toward the display area from an outer side of the left side and overlaps with the demultiplexing circuit unit outside the corner portion, wherein the demultiplexing circuit unit includes a demultiplexer transistor, and the scan transmission line is formed of a different conductive layer from an electrode of a demultiplexer transistor.
US10886353B2

An organic light-emitting display apparatus has a display layer including a pixel defining layer that surrounds a light-emission region, a first non-light-emission region in the pixel defining layer, and a second non-light-emission region in the pixel defining layer and includes a spacer that is further formed on the pixel defining layer; a light shielding layer including a first black matrix and a second black matrix respectively shielding the first non-light-emission region and the second non-light-emission region and having different permittivities from each other; and a touch screen layer including a touch electrode arranged at a location corresponding to the first black matrix and the second black matrix.
US10886341B2

The present disclosure provides a display panel, a method for preparing the same, and a display panel motherboard. The method for preparing the display panel includes: providing a support substrate; forming a base substrate on a surface of the support substrate; providing a mask plate on another surface; before forming a structure sensitive to laser irradiation on the base substrate, irradiating a surface of the support substrate with a laser, such that the at least one region irradiated by the laser is separated from the support substrate, and a region of the base substrate not irradiated by the laser remains bound to the support substrate, then forming a pixel structure in each of the display panel sub-region of the substrate, to obtain a display panel motherboard; and then cutting the display panel motherboard to obtain at least one separate display panel.
US10886327B2

A light emitting stacked structure including a plurality of epitaxial sub-units disposed one over another, each epitaxial sub-unit configured to emit colored light having different wavelength band from each other, and a common electrode disposed between and connected to adjacent epitaxial sub-units, in which light emitting regions of the epitaxial sub-units overlap each other.
US10886326B2

A display device includes a substrate that includes a display area and a peripheral area, a transistor in the display area, a pixel electrode connected to the transistor, a common electrode that overlaps the pixel electrode, and an organic insulation layer that is between the common electrode and the substrate, and overlaps at least a part of the peripheral area, wherein a thickness of a portion of the organic insulation layer overlapping the display area, and a thickness of a portion of the organic insulation layer overlapping the peripheral area, are different from each other, and the organic insulation layer includes a valley that penetrates the organic insulation layer, while overlapping the peripheral area.
US10886321B2

Provided is a highly-sensitive color image-capture element and an image capture device that can be simply manufactured, have little polarization dependency, and have micro-spectroscopic elements capable of separating incident light into three wavelength ranges integrated facing a two-dimensional pixel array. An image capture element 100 has a transparent layer 111 having a low refractive index made of SiO2 or the like and a plurality of micro-lenses 103 laminated on a two-dimensional pixel array in which pixels 102 each including a photoelectric conversion element are disposed in an array. Inside the transparent layer 111 having the low refractive index, micro-spectroscopic elements 101 composed of a plurality of microstructures having constant thickness (length in a direction perpendicular to the two-dimensional pixel array) formed of a material such as SiN having a higher refractive index than that of the transparent layer 111 is embedded.
US10886318B2

An image sensor is disclosed. The image sensor may include a semiconductor substrate including a first pixel group region and a second pixel group region, the first pixel group region including first pixel regions to sense a first light, the second pixel group region including second pixel regions to sense a second light, each of the first and second pixel regions arranged in n columns and m rows, a pixel isolation structure disposed in the semiconductor substrate to separate the first and second pixel regions from each other, first and second photoelectric conversion regions disposed in each of the first and second pixel regions of the semiconductor substrate, and a first separation structure disposed in each of the first pixel regions and in the semiconductor substrate between the first and second photoelectric conversion regions. The first separation structure may be spaced apart from the pixel isolation structure.
US10886316B2

A linear image sensor includes first and second sensor chips, first and second substrates, a common support substrate, a support portion, a dam portion, and a sealing portion. The first sensor chip is mounted to partially protrude on one end side of the first substrate. The second sensor chip is mounted to partially protrude on one end side of the second substrate. The first and second substrates are mounted on the common support substrate. The support portion is provided in a gap between the end faces of the first and second substrates. The dam portion is provided annularly to surround the sensor chips. The sealing portion seals the sensor chips, in a region surrounded by the dam portion.
US10886314B2

[Object] To achieve a high-sensitivity radiation detector. [Solution] An amplifying transistor (3) is configured such that a photodiode (1) receives light with the amplifying transistor (3) conductive.
US10886310B2

The application discloses a photoelectric sensor, a fabricating method thereof, and a display device. The method for fabricating the photoelectric sensor, includes: fabricating a thin film transistor (TFT) array and a photodiode array on a silicon substrate; transferring the TFT array onto a base substrate by a micro transfer process; and placing the photodiode array on the base substrate formed with the TFT array, in a manner that an orthographic projection of the photodiode array on the base substrate overlaps with an orthographic projection of the TFT array on the base substrate.
US10886296B2

A three-dimensional semiconductor device is disclosed. The device may include an electrode structure that can include a plurality of electrodes that are stacked on a substrate and extend in a first direction. Vertical structures can penetrate the electrode structure to provide a plurality of columns spaced apart from each other in a second direction crossing the first direction. The plurality of columns can include first and second edge columns located adjacent to respective opposite edges of the electrode structure, and the plurality of columns can include a center column located between the first and second edge columns. Distances between adjacent ones of the plurality of columns can decrease in a direction from the first and second edge columns toward the center column.
US10886295B2

According to one embodiment, a semiconductor storage device includes a stacked body, a first columnar body, and a second columnar body. In the stacked body, a plurality of conductive layers and a plurality of insulating layers are alternately stacked along a first direction. The first columnar body extends through the stacked body. The second columnar body extends through the stacked body, and is aligned with the first columnar body along the first direction. The second columnar body includes a second channel film. The first columnar body includes a first channel film, a core surrounded by the first channel film, and a conductive layer. The conductive layer is in contact with the second channel film of the second columnar body and the first channel film of the first columnar body.
US10886294B2

Embodiments of three-dimensional (3D) memory devices having a memory layer that confines electron transportation and methods for forming the same are disclosed. A method for forming a 3D memory device includes the following operations. An initial channel hole in a structure is formed. The structure includes a plurality first layers and a plurality of second layers alternatingly arranged over a substrate. An offset between a side surface of each one of the plurality of first layers and a side surface of each one of the plurality of second layers can be formed on a sidewall of the initial channel hole to form a channel hole. The channel hole with a channel-forming structure can be formed to form a semiconductor channel. The channel-forming structure can include a memory layer extending along a vertical direction. The plurality of second layers can then be replaced with a plurality of gate electrodes.
US10886292B2

An object is to provide a semiconductor device with large memory capacity. The semiconductor device includes first to seventh insulators, a first conductor, and a first semiconductor. The first conductor is positioned on a first top surface of the first insulator and a first bottom surface of the second insulator. The third insulator is positioned in a region including a side surface and a second top surface of the first insulator, a side surface of the first conductor, and a second bottom surface and a side surface of the second insulator. The fourth insulator, the fifth insulator, and the first semiconductor are sequentially stacked on the third insulator. The sixth insulator is in contact with the fifth insulator in a region overlapping the first conductor. The seventh insulator is positioned in a region including the first semiconductor and the sixth insulator.
US10886290B2

A method of etching a substrate includes providing an etching solution in a tank of an etch processing system, where the etch processing system is configured to control temperature of the etching solution, a concentration of the etching solution, and flow of the etching solution within the tank. The substrate contains micro-fabricated structures that have alternating layers of a first material and a second material, and the etching solution including an acid that etches the first material and results in an etch product to be moved from the substrate. The method further includes monitoring a concentration of the etch product within the etching solution, and maintaining the concentration of the etch product within the etching solution below a predetermined value to prevent deposition of the etch product on the second material in an amount that blocks etching of the first material by the etching solution.
US10886280B2

Provided are a semiconductor device having a gate and a method of forming the same. The method includes forming a gate dielectric, forming a first conductive material layer on the gate dielectric, forming a source material layer on the first conductive material layer, and diffusing a first element included in the source material layer into the first conductive material layer by performing a thermal treatment process to form a doped material layer.
US10886274B2

The present invention discloses a two-terminal vertical 1T-DRAM and a method of fabricating the same. According to one embodiment of the present invention, the two-terminal vertical 1T-DRAM includes a cathode layer formed of a first-type high-concentration semiconductor layer; a base region including a second-type low-concentration semiconductor layer formed on the cathode layer and a first-type low-concentration semiconductor layer formed on the second-type low-concentration semiconductor layer; and an anode layer formed of a second-type high-concentration semiconductor layer on the first-type low-concentration semiconductor layer.
US10886273B2

Some embodiments include gated bipolar junction transistors. The transistors may include a base region between a collector region and an emitter region; with a B-C junction being at an interface of the base region and the collector region, and with a B-E junction being at an interface of the base region and the emitter region. The transistors may include material having a bandgap of at least 1.2 eV within one or more of the base, emitter and collector regions. The gated transistors may include a gate along the base region and spaced from the base region by dielectric material, with the gate not overlapping either the B-C junction or the B-E junction. Some embodiments include memory arrays containing gated bipolar junction transistors. Some embodiments include methods of forming gated bipolar junction transistors.
US10886271B2

A method of forming a complementary metal oxide semiconductor (CMOS) device on a substrate, including forming a plurality of vertical fins on the substrate, forming a first set of source/drain projections on the first subset of vertical fins, forming a second set of source/drain projections on the second subset of vertical fins, where the second set of source/drain projections is a different oxidizable material from the oxidizable material of the first set of source/drain projections, converting a portion of each of the second set of source/drain projections and a portion of each of the first set of source/drain projections to an oxide, removing the converted oxide portion of the first set of source/drain projections to form a source/drain seed mandrel, and removing a portion of the converted oxide portion of the second set of source/drain projections to form a dummy post.
US10886269B2

A semiconductor device has a substrate, a first dielectric fin, and an isolation structure. The substrate has a first semiconductor fin. The first dielectric fin is disposed over the substrate and in contact with a first sidewall of the first semiconductor fin, in which a width of the first semiconductor fin is substantially equal to a width of the first dielectric fin. The isolation structure is in contact with the first semiconductor fin and the first dielectric fin, in which a top surface of the isolation structure is in a position lower than a top surface of the first semiconductor fin and a top surface of the first dielectric fin.
US10886263B2

A semiconductor device package comprises a bottom electronic device, an interposer module, a top electronic device, and a double sided redistribution layer (RDL) structure. The interposer module includes a plurality of conductive vias. The top electronic device has an active surface and is disposed above the bottom electronic device and above the interposer module. The double sided RDL structure is disposed between the bottom electronic device and the top electronic device. The active surface of the bottom electronic device faces toward the double sided RDL structure. The active surface of the top electronic device faces toward the double sided RDL structure. The double sided RDL structure electrically connects the active surface of the bottom electronic device to the active surface of the top electronic device. The double sided RDL structure electrically connects the active surface of the top electronic device to the interposer module.
US10886262B2

A light bulb includes a base, a filament coupled to the base and a cover covering the filament. The filament includes a transparent structure, optoelectronic units arranged on the transparent structure in sequence, each including a side surface, a first and second bonding pad formed on a top side of one of the optoelectronic units, a third and fourth bonding pad formed on a top side of another optoelectronic unit, conductive elements, one of the conductive elements including a bottom surface directly connecting the first and third bonding pads without covering the side surfaces of the one and the another of the optoelectronic units, and a top surface opposite to the bottom surface, the transparent structure continuously covering the optoelectronic units and the conductive elements without directly contacting the top surfaces of the conductive elements, first and seconds terminal electrically connected to the optoelectronic units.
US10886259B2

A display device is provided. The display device includes a substrate having a surface including a display area and a non-display area adjacent to the display area; a plurality of light-emitting diodes disposed on the display area of the substrate, wherein the light-emitting diode includes a contact electrode; and an anisotropic conductive layer disposed between the substrate and the plurality of light-emitting diodes, wherein the anisotropic conductive layer has a cross-sectional sidewall profile, and at least a part of the cross-sectional sidewall profile of the anisotropic conductive layer is in a shape of curve.
US10886257B2

The present application relates to a micro LED display device and, a method for manufacturing the same. The method includes the following steps. First, a plurality of LED chips are formed on a supplying substrate. Next, a first substrate defining a plurality of groups of printed circuits is provided. Then the supplying substrate is overlaid in an inverted manner on the first substrate in such a manner that the LED chips are aligned with and attached onto the groups of printed circuits correspondingly. After the LED chips are detached from the supplying substrate, the supplying substrate is removed. Then a sol-gel glass is filled into gaps among the LED chips. Finally a second substrate is bonded with the first substrate. The present disclosure is capable of improving the yield rate and the reliability.
US10886256B2

Embodiments of methods and systems for wafer bonding alignment compensation are disclosed. The method comprises bonding a first pair of wafers including a first wafer and a second wafer, wherein the first pair of wafers have a plurality of corresponding bonding alignment mark pairs each including a first bonding alignment mark on the first wafer and a second bonding alignment mark on the second wafer; measuring alignment positions of the plurality of bonding alignment mark pairs; determining a mean run-out misalignment between the first pair of wafers using the alignment measurement, wherein the mean run-out misalignment indicates a deformation of at least one of the first pair of wafers; and during bonding of a second pair of wafers, controlling a wafer deformation adjustment module to compensate for the run-out misalignment based on the mean run-out misalignment of the first pair of wafers.
US10886252B2

The disclosed technology generally relates to integrating semiconductor dies and more particularly to bonding semiconductor substrates. In an aspect, a method of bonding semiconductor substrates includes providing a first substrate and a second substrate. Each of the first substrate and the second substrate comprises a dielectric bonding layer comprising one or more a silicon carbon oxide (SiCO) layer, a silicon carbon nitride (SiCN) layer or a silicon carbide (SiC) layer. The method additionally includes, prior to bonding the first and second substrates, pre-treating each of the dielectric bonding layer of the first substrate and the dielectric bonding layer of the second substrate. Pre-treating includes a first plasma activation process in a plasma comprising an inert gas, a second plasma activation process in a plasma comprising oxygen, and a wet surface treatment including a water rinsing step or an exposure to a water-containing ambient. The method additionally includes bonding the first and the second substrates by contacting the dielectric bonding layer of the first substrate and the dielectric bonding layer of the second substrate to form a substrate assembly. The method further includes post-bond annealing the assembly.
US10886251B2

A multilayer composite bonding material for transient liquid phase bonding a semiconductor device to a metal substrate includes thermal stress compensation layers sandwiched between a pair of bonding layers. The thermal stress compensation layers may include a core layer with a first stiffness sandwiched between a pair of outer layers with a second stiffness that is different than the first stiffness such that a graded stiffness extends across a thickness of the thermal stress compensation layers. The thermal stress compensation layers have a melting point above a sintering temperature and the bonding layers have a melting point below the sintering temperature. The graded stiffness across the thickness of the thermal stress compensation layers compensates for thermal contraction mismatch between the semiconductor device and the metal substrate during cooling from the sintering temperature to ambient temperature.
US10886247B2

In order to suppress oscillation and malfunction of a switching element in a power converter, the power converter includes a switching element; and an oscillation suppression circuit having a stub which is electrically connected to a terminal of the switching element. A signal of the oscillation frequency is suppressed based on a length of the stub relative to a wavelength of the oscillation frequency. When an incident wave reflects from the open end of the stub, the reflected wave is out of phase with the incident wave, and the incident wave and the reflected wave cancel each other.
US10886243B2

A method for preparing fan-out antenna packaging structure, includes: providing a carrier and a release layer structure; forming a single-layer antenna structure and a redistribution layer on an upper surface of the release layer; disposing a semiconductor chip electrically connected with the redistribution layer; forming a leading-out conducting wire on the redistribution layer at least on one side of the semiconductor chip; forming a plastic packaging layer wrapping the chip and the leading-out conducting wire; removing part of the plastic packaging layer to expose the chip and the leading-out conducting wire; forming an under-bump metal layer and a solder ball bump on an upper surface of the plastic packaging layer; removing the carrier and the release layer to expose the single-layer antenna structure; soldering a substrate on the solder ball bump; and forming a layer of cooling fins on a second surface of the semiconductor chip.
US10886236B1

An interconnect structure includes a first and second insulating layer, a first and second conductive line, and a first, second, and third conductive via. The second insulating layer is disposed on the first insulating layer. The first conductive line including a first and second portion, and the first, second, and the third conductive vias are embedded in the first insulating layer. The second conductive line including a third portion and fourth portion is embedded in the second insulating layer. The first conductive via connects the first and third portions. The second conductive via connects the second and third portions. The third conductive via connects the second and fourth portions. A first cross-sectional area surrounded by the first, second, third portions, the first, second conductive vias is substantially equal to a second cross-sectional area surrounded by the second, third, fourth portions, the second, third conductive vias.
US10886231B2

A method includes encapsulating a device die in an encapsulating material, planarizing the device die and the encapsulating material, and forming a first plurality of conductive features electrically coupling to the device die. The step of forming the first plurality of conductive features includes a deposition-and-etching process, which includes depositing a blanket copper-containing layer, forming a patterned photo resist over the blanket copper-containing layer, and etching the blanket copper-containing layer to transfer patterns of the patterned photo resist into the blanket copper-containing layer.
US10886222B2

Disclosed herein is a method of forming a semiconductor structure. The method includes the steps of: forming a first dielectric layer having a first through hole on a precursor substrate, in which the first through hole passes through the first dielectric layer; filling a sacrificial material in the first through hole; forming a second dielectric layer having a second through hole over the first dielectric layer, in which the second through hole exposes the sacrificial material in the first through hole, and the second through hole has a bottom width less than a top width of the first through hole; removing the sacrificial material after forming the second dielectric layer having the second through hole; forming a barrier layer lining sidewalls of the first and second through holes; and forming a conductive material in the first and second through holes.
US10886221B2

A semiconductor device includes a first wiring extending in a first direction and a second wiring extending in a second direction crossing the first direction and having an end that faces the first wiring and is a predetermined distance away from the first wiring. The predetermined distance is approximately equal to a width of the second wiring, and the end of the second wiring is formed into one or more loops.
US10886220B2

For a semiconductor integrated circuit device in which IO cells are disposed, power supply voltage drop can be reduced using a multilayer interconnect. A power supply interconnect formed in a plurality of interconnect layers extends in an X direction that is a same direction as a direction in which the IO cells are aligned. In an area of a power supply IO cell, a power supply interconnect extending in a Y direction is disposed in one of the interconnect layers in which the power supply interconnect is not formed and an interconnect piece is disposed in a same position as a position of the power supply interconnect formed in an area of a signal IO cell in the Y direction at each of both ends of the area of the power supply IO cell in the X direction.
US10886212B2

A radio frequency (RF) switch includes a phase-change material (PCM), a heating element underlying an active segment of the PCM and extending outward and transverse to the PCM, and RF terminals having lower metal portions and upper metal portions. At least one of the lower metal portions can be ohmically separated from and capacitively coupled to passive segments of the PCM, while the upper metal portions are ohmically connected to the lower metal portions. Alternatively, the lower metal portions can be ohmically connected to passive segments of the PCM, while a capacitor is formed in part by at least one of the upper metal portions. Alternatively, at least one of the RF terminals can have a trench metal liner separated from a trench metal plug by a dielectric liner. The trench metal liner can be ohmically connected to passive segments of the PCM, while the trench metal plug is ohmically separated from, but capacitively coupled to, the trench metal liner.
US10886210B2

A cover for an electronic device includes a support body having a through-passage. An optical element which allows light to pass is mounted on said support body in a position extending across the through-passage. A surface of the optical element includes an electrically-conducting track configured as a security detection element. At least two electrical connection leads are rigidly attached to the support body and include first uncovered portions internal to the support body and electrically connected to spaced apart locations on the electrically-conducting track. The at least two electrical connection leads further including second uncovered portions external to said support body. The cover is mounted on a support plate carrying an electronic chip situated in the through-passage at a distance from the optical element.
US10886206B2

A lead frame for use in an optical semiconductor device has a die pad portion on which an optical semiconductor element is mounted and a lead portion electrically connectable with the optical semiconductor element. A surface on a lead frame substrate forming a part of or an entirety of the die pad portion and the lead portion is laminated with a glossy Ni plating layer having a gloss of 2.0-3.5 and a noble metal plating layer including an Ag plating layer, as an uppermost layer, having a gloss of 1.6 or more.
US10886205B2

A terminal structure of a terminal used for connecting a semiconductor device included in a semiconductor module to an outside element, including plate-shaped portions at both ends, and a bent portion positioned between the plate-shaped portions. The bent portion has an outer surface at an outer side of the bent portion, and an inner surface at an inner side of the bent portion. The outer surface has a first uneven surface including a plurality of hollow portions and/or a plurality of protruding portions.
US10886202B2

Provided is a semiconductor device capable of having simple wiring in mounting the semiconductor device. The semiconductor device includes at least one P-terminal, at least one N-terminal, a power output terminal, at least one power supply terminal, at least one ground (GND) terminal, at least one control terminal, and a package that is rectangular in a plan view and accommodates an insulated gate bipolar transistor (IGBT) being a high-side switching element, an IGBT being a low-side switching element, and a control circuit. The at least one control terminal is disposed on a first side of the package, opposite to a second side on which the power output terminal is disposed. The at least one P-terminal, the at least one N-terminal, the at least one power supply terminal, and the at least one GND terminal are disposed on a third side of the package, orthogonal to the second side.
US10886201B2

A substrate includes a first metal layer, a second metal layer, a third metal layer and an insulation layer surrounding the first metal layer, the second metal layer and the third metal layer. The first power component is electrically connected to the first metal layer. The second power component is electrically connected to the second metal layer. The shortest distance between the first metal layer exposed to a second surface of the insulation layer and the second metal layer exposed to the second surface is a first distance, the shortest distance between a first metal layer of the insulation layer exposed to the first surface and the second metal layer exposed to the first surface is a second distance, and a ratio value of the first distance to the second distance ranges between 1.25 and 1.4.
US10886198B2

A device comprises a base, a die, leads, and an electrically-insulating die housing covering the die. The base comprises a die mounting section in which the die is mounted. The leads extend away from the die mounting section and are electrically connected to the die. The base further comprises a base mounting section and a recessed section. The recessed section comprises a recess between the die mounting section and the base mounting section. The base further comprises a first side, a second side opposing the first side, and a thickness measured between the first and second sides. The thickness of the base throughout the recessed section is less than the thickness of the base throughout the base mounting section. The base further comprises an opening extending at least through the base mounting section from the first side to the second side.
US10886193B2

Thermal thermally conductive interfaces are used in electronic devices for heat transfer between, for example, the mating heat transfer surfaces of a heat-generating, electronic component, such as an integrated circuit (IC) chip, and a thermal dissipation member, such as a heat sink or spreader, for the conductive cooling of the electronic component. The thermally conductive interface includes a heat spreading material formed of a flexible, lamellar graphite material having a plurality of coarse perforations therein; and a coating of a thermally-conductive phase change material joined to the surface of the graphite material.
US10886191B2

The invention relates to a method for producing an assembly (1), in particular a power electronics unit, comprising the following steps: providing a component (2) to be cooled having a first surface (4), providing a cooling device (3) having a second surface (5) opposite the first surface (4), arranging a 3-dimensional heat transfer plate (6) between the two surfaces (4, 5), wherein the heat transfer plate (6) extends in a plate plane (11) parallel to the two surfaces (4, 5) and in the initial state a plurality of contact extensions (9) which extend outwards with respect to said plate plane (11), and bracing the component (2) and the cooling device (3) relative to one another, such that the contact extensions (9) are deformed in the direction of the metal sheet.
US10886182B2

In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers containing Ge and second semiconductor layers are alternately stacked, is formed over a bottom fin structure. A Ge concentration in the first semiconductor layers is increased. A sacrificial gate structure is formed over the fin structure. A source/drain epitaxial layer is formed over a source/drain region of the fin structure. The sacrificial gate structure is removed. The second semiconductor layers in a channel region are removed, thereby releasing the first semiconductor layers in which the Ge concentration is increased. A gate structure is formed around the first semiconductor layers in which the Ge concentration is increased.
US10886168B2

Back end of line (BEOL) structures and methods generally includes forming at least two adjacent conductors separated by a space formed in a first dielectric material, wherein a liner layer is intermediate the first dielectric material and each of the at least two adjacent conductors. A second dielectric material in the space between the at least two adjacent conductors and in contact with the first dielectric material at a bottom surface thereof, wherein the first dielectric material is different from the second dielectric material, and wherein the first dielectric material has a nitrogen enriched surface at an interface between the first dielectric material and the second dielectric material. The nitrogen enriched surface can be formed by plasma nitridation, thermal nitridation, or laser annealing in the presence of nitrogen gas, ammonia, or a combination thereof.
US10886167B2

A semiconductor device includes: a substrate having active regions defined by a device isolation region; a conductive line extending in a direction on the active regions; insulating liners on both sidewalls of a lower portion of the conductive line that contacts with the active regions; spacers that are apart from the insulating liners in a direction perpendicular to a surface of the substrate and sequentially formed on both sidewalls of an upper portion of the conductive line; a blocking layer arranged at a spacing between a spacer located in the middle of the spacers and the insulating liners and in a recess portion recessed from one end of the spacer located in the middle of the spacers toward the conductive line; and conductive patterns arranged on the active regions on both sides of the spacers.
US10886164B2

An integrated circuit may be formed by forming an isolation recess in a single-crystal silicon-based substrate. Sidewall insulators are formed on sidewalls of the isolation recess. Thermal oxide is formed at a bottom surface of the isolation recess to provide a buried isolation layer, which does not extend up the sidewall insulators. A single-crystal silicon-based semiconductor layer is formed over the buried isolation layer and planarized to be substantially coplanar with the substrate adjacent to the isolation recess, thus forming an isolated semiconductor layer over the buried isolation layer. The isolated semiconductor layer is laterally separated from the substrate.
US10886163B2

A bonded wafer including an ion implantation step using a batch processing ion implanter, wherein the ion implantation step is performed by irradiating a bond wafer with a light element ion beam without forming an insulator film on the bond wafer surface or through an insulator film having a thickness of 50 nm or less formed on the bond wafer surface at an implantation angle inclined from a crystal axis of the bond wafer; and the bond wafer surface is irradiated with the center of the light element ion beam shining at a position on the bond wafer surface shifted from the center of the bond wafer parallel to the center of a rotor by a predetermined amount providing a bonded wafer to prevent degradation of the radial uniformity of ion implantation depth and manufacture a bonded wafer with excellent radial uniformity of thickness of a thin film after delamination.
US10886162B2

A semiconductor-on-insulator substrate for use in RF applications, such as a silicon-on-insulator substrate, comprises a semiconductor top layer, a buried oxide layer and a passivation layer over a support substrate. In addition, a penetration layer is provided between the passivation layer and the silicon support substrate to ensure sufficient high resistivity below RF features and avoid increased migration of dislocations in the support substrate. RF devices may be fabricated on and/or in such a semiconductor-on-insulator substrate.
US10886148B2

The present disclosure relates to a semiconductor package with reduced parasitic coupling effects, and a process for making the same. The disclosed semiconductor package includes a thinned flip-chip die and a first mold compound component with a dielectric constant no more than 7. The thinned flip-chip die includes a back-end-of-line (BEOL) layer with an upper surface that includes a first surface portion and a second surface portion surrounding the first surface portion, a device layer over the upper surface of the BEOL layer, and a buried oxide (BOX) layer over the device layer. The BEOL layer includes a first passive device and a second passive device, which are underlying the first surface portion and not underlying the second surface portion. Herein, the first mold compound component extends through the BOX layer and the device layer to the first surface portion.
US10886146B2

There is provided a copper foil provided with a carrier providing excellent chemical resistance against the copper flash etching solution during the formation of the wiring layer on the surface of the coreless support and excellent visibility of the wiring layer due to high contrast to the antireflective layer in image inspection after copper flash etching. The copper foil provided with a carrier comprises a carrier; a release layer provided on the carrier; an antireflective layer provided on the release layer and composed of at least one metal selected from the group consisting of Cr, W, Ta, Ti, Ni and Mo; and an extremely-thin copper layer provided on the antireflective layer; wherein at least the surface adjacent to the extremely-thin copper layer of the antireflective layer comprises an aggregate of metal particles.
US10886123B2

A method for forming a metal nitride film with good film closure at low temperatures is disclosed. The method may comprise utilizing plasma to form NH and NH2 radicals to allow for the formation of the metal nitride at low temperatures. The method may also comprise flowing an etch gas to result in an amorphous film with uniform thickness. The method may also comprise flowing an alkyl hydrazine to inhibit three-dimensional island growth of the metal nitride film.
US10886117B2

The invention is a method for capturing biological species present in a body tissue. The method comprises an arrangement of tissue on a support, referred to as a capture support, capable of selectively capturing one or more biological species, referred to as species of interest. The method comprises; —a step of depositing a lysis reagent on the tissue; —a step of droplet formation, on the surface of the tissue, each droplet comprising the solubilized lysis reagent; —a formation of lysis sites, in the tissue, between each droplet and the capture support, such that at each lysis site, species of interest are freed and captured by the capture support.
US10886110B2

A system that predicts an apparatus state of a plasma processing apparatus including a processing chamber in which a sample is processed is configured to have a data recording unit that records emission data of plasma during processing of the sample and electrical signal data obtained from the apparatus during the plasma processing, an arithmetic unit that includes a first calculation unit for calculating a first soundness index value of the plasma processing apparatus and a first threshold for an abnormality determination using a first algorithm with respect to the recorded emission data and a second calculation unit for calculating a second soundness index value of the plasma processing apparatus and a second threshold for the abnormality determination using a second algorithm with respect to the electrical signal data recorded in the data recording unit, and a determination unit that determines soundness of the plasma processing apparatus using the calculated first soundness index value and the first threshold and the calculated second soundness index value and the second threshold.
US10886098B2

An apparatus may include a main chamber, an entrance tunnel, having an entrance axis extending into the main chamber, and an exit tunnel, connected to the main chamber and defining an exit axis, wherein the entrance tunnel and the exit tunnel define a beam bend of less than 25 degrees therebetween. The apparatus may include an electrode assembly, disposed in the main chamber, on a lower side of the exit tunnel; and a catch assembly, disposed within the main chamber, in a line of sight from an exterior aperture of the exit tunnel.
US10886093B2

A feedthrough for providing an electrical connection is provided. The feedthrough comprises a conductor and a quartz or a glass structure configured to surround at least a portion of the conductor and provide isolation to the conductor. The conductor and the quartz or glass structure may be coaxially arranged. The feedthrough can provide an electrical connection between an inside and outside of a vacuum chamber that contains a sample.
US10886090B2

A method is for protecting an electrical architecture including a protective device provided with a protective fuse capable of melting in a deteriorated mode of operation during which a breaking current having an amperage greater than a threshold is flowing through the architecture. The method includes, in a nominal mode of operation, periodically estimating a temperature of the fuse and controlling an amperage of a useful current flowing through the fuse such that the estimated temperature remains below a melting temperature of the fuse.
US10886087B2

An overcurrent protection device according to an embodiment of the present disclosure may include a first electrode disposed substantially parallel to a second electrode. A material may be disposed between the first electrode and the second electrode. A plurality of conductive material nodules may be disposed in the material between the first electrode and the second electrode, including a first conductive material nodule at least partially contacting an inner surface of the first electrode and a second conductive material nodule at least partially contacting an inner surface of the second electrode and the first conductive material nodule. In response to an overcurrent condition the material may be configured to expand, such that the contact between the first electrode, the first conductive material nodule, the second conductive material nodule, and the second electrode is at least partially interrupted.
US10886085B2

A temperature-controlled device for switching off a heating device at a limit temperature has a thermo-mechanical temperature sensor device, a switch-off device, and manual reactivation means. The switch-off device has switching means which are activated by a trigger for switching off the heating device. The manual reactivation means have a movable handle and transmission means for transmitting a force of an operator for reactivating the switching means after switching off the heating device by the trigger. The transmission means have a click spring which at the beginning is in a basic position and, when an operating force acting on said click spring exceeds a certain limit force, clicks to a deflected position. Said click spring in the basic position enables reactivating or re-switching on, respectively, of the switching means. Said click spring in the deflected position releases so much movement path on the transmission means for the switching means that said switching means by the temperature sensor device and by the switch-off device above the limit temperature are activatable and switchable by the trigger.
US10886081B1

The keyboard device includes a substrate, a key, a first elastic member, and a second elastic member. The substrate includes a top surface having an assembly area. The assembly area has a pivoting base including a standing portion and an extension portion extending from the standing portion. The key is liftably disposed over the assembly area. A pivoting hook is extending from the bottom of the key toward the assembly area, and one end of the pivoting hook includes a pivoting portion. The first elastic member and the second elastic member are disposed on the assembly area and elastically abutted against the bottom of the key, so that the pivoting portion is abutted against and pivoted to the extension portion, and a liftable distance is maintained between the extension portion and the bottom of the key.
US10886080B1

A pushbutton includes a base extending in a longitudinal direction, a sensor module mounted to the base, a keycap disposed above the sensor module, two scissor switch modules, a main pushbutton module and two side pushbutton modules. The sensor module has a first sensing member and two second sensing members. The main pushbutton module is operable to switch between a released state, where the main pushbutton module is not in direct contact with the first sensing member such that each of the scissor switch modules would not be in direct contact with a respective one of the second sensing members, and a depressed state, where the main pushbutton module comes in direct contact with the first sensing member.
US10886066B2

A multilayer ceramic capacitor includes a body and an external electrode on the body. The body includes a dielectric layer and an internal electrode. The external electrode includes an electrode layer connected to the internal electrode, a first plating portion on the electrode layer, and a second plating portion on the first plating portion. The first plating portion includes a plurality of plating layers in which a tin (Sn)-plated layer and a nickel (Ni)-plated layer are alternately stacked.
US10886064B2

The present invention relates to an arrangement for fastening a capacitor cup within which a capacitor is accommodated. The arrangement is for fastening a capacitor cup onto an opening of a mid-plate, wherein the capacitor cup comprises a cylindrical body having an opening end and an opposite end. The arrangement comprises: a collar provided on an outer surface of the cylindrical body, closely around the opening end; at least one first engagement feature formed at the outer surface of the cylindrical body and adjacent to the collar; and, at least one second engagement feature, corresponding to the first engagement feature, formed at an edge of the opening of the mid-plate; wherein, an engagement between the first and second engagement features fastens the capacitor cup onto the opening of the mid-plate. This arrangement for fastening the capacitor cup according to the present invention eliminates additional fastening members or parts, and effectively creates and maintains an environmental seal between the electronics area and the environment.
US10886062B2

Disclosed is a method for preparing a rare-earth permanent magnet. The method includes: preparing an R-T-B-based sintered magnet; applying a first mixture including a light rare-earth element onto the surface of the R-T-B-based sintered magnet and diffusing the first mixture under a vacuum atmosphere to prepare a light rare-earth permanent magnet having the light rare-earth element diffused into a grain boundary; and applying a second mixture including a heavy rare-earth element onto the surface of the light rare-earth permanent magnet and diffusing the second mixture into the grain-boundary under a vacuum atmosphere to prepare a rare-earth permanent magnet.
US10886054B2

The present disclosure provides a high-voltage transformer and an electronic power apparatus. The high-voltage transformer includes a magnetic core, a secondary coil unit, and a primary coil unit. The secondary coil unit includes a secondary winding; and the primary coil unit includes a primary winding and an insulating portion. The insulating portion forms at least one through hole. At least one primary winding encircle at least one through hole and is wrapped by the insulating portion and fixed in the insulating portion. The magnetic core passes through at least one through hole. A shielding layer is formed on a surface of the insulating portion, and the shielding layer is used for connecting a safety ground.
US10886053B2

In large area plasma processing systems, process gases may be introduced to the chamber via the showerhead assembly which may be driven as an RF electrode. The gas feed tube, which is grounded, is electrically isolated from the showerhead. The gas feed tube may provide not only process gases, but also cleaning gases from a remote plasma source to the process chamber. The inside of the gas feed tube may remain at either a low RF field or a zero RF field to avoid premature gas breakdown within the gas feed tube that may lead to parasitic plasma formation between the gas source and the showerhead. By feeding the gas through an RF choke, the RF field and the processing gas may be introduced to the processing chamber through a common location and thus simplify the chamber design.
US10886051B2

Connector element includes an enclosure made of a generally non-magnetic material having an open face; an insulating plate with a plate aperture; a permanent magnet placed inside the enclosure, the magnet dimensions preventing egress from the enclosure through the plate aperture; a washer made of a conductive soft ferromagnetic material with a washer aperture being larger than dimensions of said permanent magnet, placed inside the enclosure. Also disclosed are transformable electronic devices, optionally including displays, toys and educational kits built using the self-actuating connector elements.
US10886045B2

A ferrite sheet includes acicular ferrite powder, and has a uniaxially-oriented magnetic direction. The ferrite sheet is capable of remarkably increasing magnetic permeability and saturation magnetization, and accordingly is capable of remarkably improving the power efficiency of an electronic device by minimizing magnetic field leakage when being applied to a shielding sheet.
US10886044B2

A rare earth permanent magnet that is high in residual magnetization and coercivity is obtained and includes R and T. A main phase of crystal grains having an Nd5Fe17 type crystal structure is included. In an X-ray diffraction profile drawn by performing an XRD measurement for a rare earth permanent magnet, peaks of detected intensity are present in specific ranges. In which the detected intensity of the peak with the highest detected intensity in the range of 41.60°<2θ(°)<42.80° is set as α, the detected intensity of the peak with the highest detected intensity in the range of 34.38°<2θ(°)<34.64° is set as β, and the detected intensity of the peak with the highest detected intensity in the range of 38.70°<2θ(°)<41.20° is set as γ, 0.38<α/β<0.70 and 0.45<γ/β<0.70 are established. The peak with the highest detected intensity in the range of 34.38°<2θ(°)<34.64° is a peak derived from the Nd5Fe17 type crystal structure.
US10886043B2

A ceramic member comprising a compound oxide of La, E and Mn, wherein AE is (i) Ca, or (ii) contains Ca and at least one of Sr and Ba with a total amount of Sr and Ba to a total of Ca, Sr and Ba of not more than 5 mol %, and a crystal system in a surface of the ceramic member is a monoclinic system.
US10886039B2

A cable having good flammability performance and reduced smoke emission is provided.
US10886034B2

A cable having one or more conductors surrounded by at least an inner semiconductive layer, an insulation layer and an outer semiconductive layer, in that order. The insulation layer has at least 90 wt % of a polymer composition, said polymer composition having 80.0 to 99.9 wt % of an LDPE homopolymer or copolymer; and 0.1 to 20.0 wt % of: an ultra-high molecular weight polyethylene having a Mw of at least 1,000,000; or a single site catalysed medium density polyethylene (MDPE) having a density of 925 to 940 kg/m3 or a single site catalysed linear low density polyethylene (LLDPE) having a density of 910 to 925 kg/m3.
US10886029B2

Web-based annotation of three dimensional medical imagery is provided. In various embodiments, a plurality of two dimensional medical images is read from a data store. The plurality of two dimensional images is a subset of a three dimensional medical imaging study. The plurality of two dimensional medical images is provided to a remote user. Regional annotations for each of the plurality of medical images are received from the remote user. A volumetric description of the three dimensional imaging study is generated by interpolation of the regional annotations. The volumetric description of the three dimensional imaging is provided for rendering and display to the remote user.
US10886011B2

Systems and methods for determining monitoring compliance are provided. Each element in a plurality of data elements is obtained from a medical device connected to a corresponding subject in a first plurality of subjects and interrogated to determine a condition of the device or subject. A medical code and timestamp for evaluation of the device or subject is recorded in the subject's medical record. A determination is made for each epoch in a plurality of epochs, for each subject in a second plurality of subjects, whether the medical code is recorded in the subject's medical record for the epoch by evaluating the time stamps and codes in the medical records. A compliance counter is advanced when a medical record includes the code for a respective epoch and otherwise a noncompliance counter is advanced. Responsive to a compliance request, compliance information or suggested treatment options are provided based on the counters.
US10886005B2

A method and computer system for identifying genes associated with a phenotype includes obtaining data representing mutations in a cohort of subjects exhibiting a phenotype. An evolutionary action (EA) score is calculated for each mutation using the data obtained. For each gene in the cohort, respective distributions of the calculated EA scores are determined for mutations found in the gene. The determined distributions of EA scores are quantitatively compared within the cohort and with random distributions to establish comparison data. Based on the comparison data, distributions of EA scores are identified that are non-random, and linkage of each gene in the cohort to the phenotype is assessed based on the identified non-random distributions to identify genes associated with the phenotype. The phenotype can be a disease, such as cancer, and linkage of each gene in the cohort to the disease can be assessed to identify disease causing genes.
US10885998B1

A circuit may include a voltage line and latch circuitry. The latch circuitry may be characterized by a switching voltage threshold and may be coupled to the voltage line. The latch circuitry may generate an output used to determine a state of a fuse. The circuit may also include generation circuitry coupled to the latch circuitry via the voltage line, wherein the generation circuitry is configured to pre-charge the voltage line to a first voltage between a system logical low voltage and the switching voltage threshold.
US10885997B2

A one-time programmable (OTP) memory cell, and an OTP memory and a memory system including the same may be provided. The OTP memory cell includes a main OTP cell transistor, a redundant OTP cell transistor, and an access transistor that are connected in series between a first node in a floating state and a second node. The OTP memory cell is configured to apply a program voltage to gates of the main OTP cell transistor and the redundant OTP cell transistor, and a program access voltage lower than the program voltage to a gate of the access transistor, during a program operation.
US10885988B2

A memory system of an embodiment includes a memory device including a first set of cell transistors and a second set of cell transistors; and a controller configured to transmit to the memory device a first instruction and transmit to the memory device a second instruction after reception of a first request without receiving the first request again. The first instruction instructs parallel reads from the first and second sets of cell transistors, and the second instruction instructs a read from the first set of cell transistors.
US10885979B2

A method is presented for mitigating conductance drift in intercalation cells for neuromorphic computing. The method includes forming a first electro-chemical random access memory (ECRAM) structure over a substrate and forming a second ECRAM over the substrate, the first and second ECRAMs sharing a common contact. The common contact can be either a source contact or a drain contact. Each of the first and second ECRAMs can include a tungsten oxide layer, an electrolyte layer, and a gate contact.
US10885978B2

A non-volatile nanotube switch and memory arrays constructed from these switches are disclosed. A non-volatile nanotube switch includes a conductive terminal and a nanoscopic element stack having a plurality of nanoscopic elements arranged in direct electrical contact, a first comprising a nanotube fabric and a second comprising a carbon material, a portion of the nanoscopic element stack in electrical contact with the conductive terminal. Control circuitry is provided in electrical communication with and for applying electrical stimulus to the conductive terminal and to at least a portion of the nanoscopic element stack. At least one of the nanoscopic elements is capable of switching among a plurality of electronic states in response to a corresponding electrical stimuli applied by the control circuitry to the conductive terminal and the portion of the nanoscopic element stack. For each electronic state, the nanoscopic element stack provides an electrical pathway of corresponding resistance.
US10885974B2

A bistable device allows supercurrent to flow when functioning in one regime, wherein magnetization directions of different magnetic layers are antiparallel, but restricts supercurrent when switched to function in a resistive regime, wherein the magnetization directions are parallel. In the first regime, the device acts as a Josephson junction, which allows it to be used in superconducting quantum interference devices (SQUIDs) and other circuits in which quantization of magnetic flux in a superconducting loop is desired. In the second, resistive regime, flux quantization is effectively eliminated in loops containing the device, and current is diverted to parallel superconducting components. The bistable device thereby acts as a superconducting switch, useful for a variety of circuit applications, including to steer current for memory or logic circuits, adjust logical circuit functionality at runtime, or to burn off stray flux during cooldown.
US10885966B1

A method of protecting a DRAM memory device from the row hammer effect includes the memory device comprising a plurality of banks composed of memory rows, the method being implemented by at least one logic prevention device configured to respectively associate contiguous sections of rows of a bank with sub-banks and to execute, on each activation of a row of a sub-bank (b) of the memory, an increment step of a required number of preventive refreshments (REFRESH_ACC; REFRESH_ACC/PARAM_D) of the sub-bank (b) using an activation threshold (PARAM_D) of the sub-bank (b). The prevention logic is also configured to execute a preventive refresh sequence of the sub-banks according to their required number of preventive refreshes. A DRAM memory device, a buffer circuit or a controller of such a memory may comprise the logic for preventing the row hammer effect.
US10885962B2

Vertical memory cells and memory devices using the same are disclosed. In one example, a memory cell formed on a backend layer over a substrate is disclosed. The memory cell includes: a first electrode, a second electrode and a magnetic tunnel junction. The first electrode has sidewalls and a bottom surface disposed over the backend layer. The second electrode has sidewalls and a bottom surface in contact with the backend layer. The magnetic tunnel junction is formed between the first electrode and the second electrode. The magnetic tunnel junction is coupled to a sidewall of the first electrode and coupled to a sidewall of the second electrode.
US10885950B2

A method of operating memory devices disposed in different ranks of a multi-rank memory device and sharing a signal line includes receiving, in all of the memory devices included in the multi-rank memory device, on-die termination (ODT) state information of the signal line. The method further includes storing, in each of the memory devices of the multi-rank memory device, the ODT state information of the signal line in a mode register. The method further includes generating, in each of the memory devices of the multi-rank memory device, a control signal based on the ODT state information of the signal line stored in the mode register. The method further includes changing, in each of the memory devices of the multi-rank memory device, an ODT setting of the signal line in response to the control signal.
US10885947B2

A power gating system including: a first power line coupled to a first pad; a second power line coupled to a second pad; a third power line coupled to a plurality of logic gates in common; a first power gating switch coupled between the first and third power lines; and a second power gating switch coupled between the second and third power lines. When a double power mode is set, the first and second power gating switches may be turned on to couple the first and second power lines to the third power line at the same time.
US10885942B2

Methods, computer-readable media, and apparatuses for composing a video in accordance with a user goal and an audience preference are described. For example, a processing system having at least one processor may obtain a plurality of video clips of a user, determine at least one goal of the user for a production of a video from the plurality of video clips, determine at least one audience preference of an audience, and compose the video comprising at least one video clip of the plurality of video clips of the user in accordance with the at least one goal of the user and the at least one audience preference. The processing system may then upload the video to a network-based publishing platform.
US10885940B2

A disc storage device rack includes: an accommodation space surrounded by left and right side plates and upper and lower partition plates and configured to accommodate a disc storage device; a guide portion provided on the side plates and configured to fit to a guided unit provided in the disc storage device to guide a sliding operation of the disc storage device; and a shutter provided on each end surface of the side plates so as to be slidable in an up-and-down direction and configured to open an opening of the guide portion when the disc storage device is pulled out from the accommodation space or when the disc storage device is pushed into the accommodation space.
US10885937B2

A multiple recording device management system including an intermediate multiple recording device managing apparatus, a vehicle recording device mounted in a police vehicle and synced to the managing apparatus, and a personal recording device carried by a police officer and wirelessly synced to the managing apparatus. The managing apparatus is operable to detect when the vehicle recording device, personal recording device, or any other synced device in range has begun recording and to transmit a communication signal to any synced recording device in range indicating that the recording device should begin recording and to further transmit a time stamp to synced recording devices for corroborating recorded data.
US10885928B1

A method for increasing accuracy and reducing computational requirements for blind source separation of mixtures of signals in multi-path environments includes receiving a plurality of channel inputs, each channel input comprising a mixture of signals from a plurality of sources, performing a short time Fourier transform on each channel input of the plurality of channels, wherein a respective output of a respective short time Fourier transform on a respective channel is a respective time-frequency distribution for the respective channel, vectorizing each respective time-frequency distribution into a respective mixed frequency and time vector, combining each respective mixed frequency and time vector into a mixed frequency and time matrix, and performing blind source separation on the mixed frequency and time matrix to separate the mixture of signals from the plurality of sources into a plurality of signal source channels, each respective signal source channel comprising signals from a respective source.
US10885925B2

A method includes processing a time-domain decoded high-band mid signal to generate a time-domain high-band residual prediction signal. The method also includes generating a high-band left channel and a high-band right channel based on the time-domain decoded high-band mid signal and the time-domain high-band residual prediction signal.
US10885924B2

An apparatus for generating an enhanced signal from an input signal, wherein the enhanced signal has spectral values for an enhancement spectral region, the spectral values for the enhancement spectral regions not being contained in the input signal, includes a mapper for mapping a source spectral region of the input signal to a target region in the enhancement spectral region, the source spectral region including a noise-filling region; and a noise filler configured for generating first noise values for the noise-filling region in the source spectral region of the input signal and for generating second noise values for a noise region in the target region, wherein the second noise values are decorrelated from the first noise values or for generating second noise values for a noise region in the target region, wherein the second noise values are decorrelated from first noise values in the source region.
US10885921B2

A method includes receiving, at an audio encoder, multiple streams of audio data. The method includes assigning a priority to each stream of the multiple streams and determining, based on the priority of each stream of the multiple streams, a permutation sequence for encoding of the multiple streams. The method also includes encoding at least a portion of each stream of the multiple streams according to the permutation sequence.
US10885916B2

A control method of an electronic device includes receiving a user voice; based on a user command corresponding to the user voice being already registered, providing at least one audio or visual indication that the user command is unable to be registered as a voice command; based on the user command corresponding to the user voice not being registered yet, providing at least one audio or visual indication that the user command is able to be registered as a voice command; and based on the user command corresponding to the user voice being related to a prohibited expression, providing at least one audio or visual indication that the user command is related to the prohibited expression.
US10885913B2

An object searching method is disclosed. The object searching method includes the following operations: receiving an user message; analyzing an object name from the user message; obtaining a locator corresponding to the object name according to a locator mapping table; detecting a locator distance and a locator direction of the locator; generating a description string according to the locator distance, the locator direction, and a feature direction map; generating a voice message according to the description string and the object name; and broadcasting the voice message.
US10885911B2

Disclosed herein are device, system and method embodiments for implementing a voice endpoint to chatbot bridge interface system. A bridge interface device operates by receiving query text corresponding to audio information captured at a voice endpoint, generating a bot agent request based on the query text and a bot agent associated with the query text, and sending the bot agent request to the bot agent. Further, the bridge interface device receives a bot agent response including response information associated with the query text, and sends a query response to the voice endpoint based on the bot agent response.
US10885910B1

Systems, methods, and computer-readable media are disclosed for systems and methods for voice-forward graphical user interface mode management. Example methods include determining that a device is coupled to an accessory device, determining that being coupled to the accessory device causes the device to deactivate a first operating mode and activate a second operating mode, where the second operating mode has a lower content density than the first operating mode, and determining that an application setting of an application executing on the device is causing the device to remain in the first operating mode. Example methods may include determining that a new value is associated with the application setting, and causing the device to activate the second operating mode.
US10885905B2

A method includes that for each model from multiple models, evaluating a model prediction accuracy based on a dataset of a user over a first time duration. The dataset includes a sequence of actions with corresponding contexts based on electronic device interactions. Each model is trained to predict a next action at a time point within the first time duration, based on a first behavior sequence over a first time period from the dataset before the time point, a second behavior sequence over a second time period from the dataset before the time point, and context at the time point. A model is selected from the multiple models based on its model prediction accuracy for the user based on a domain. An action to be initiated at a later time using an electronic device of the user is recommended using the selected model during a second time duration.
US10885894B2

Disclosed are a system and a method for singing expression transplantation. A singing expression transplantation method performed by a singing expression transplantation system according to an embodiment may comprise the steps of: synchronizing each of a first sound source and a second sound source, which include different pieces of voice information with regard to an identical song; modifying the pitch of the first sound source on the basis of pitch information extracted from each of the first sound source and the second sound source, which have been synchronized; and extracting volume information from each of the first sound source and the second sound source and adjusting the magnitude of the volume regarding the first sound source, the pitch of which has been modified, according to each piece of extracted volume information.
US10885893B2

An electronic device includes a display screen and circuitry. The circuitry receives a first frequency modulated (FM) signal from a first FM radio transmitter, via a first FM radio channel. The first FM signal comprises a broadcast data signal that includes an audio segment of aural information of a performer-of-interest at of a live event, text information associated with the audio segment, and synchronization information. The synchronization information is associated with the text information and the audio segment. The circuitry extracts the synchronization information from a plurality of data packets of the broadcast data signal. The circuitry extracts a portion of the text information from the extracted plurality of data packets of the broadcast data signal based on the extracted synchronization information. The circuitry controls display of the extracted portion of the text information on the display screen.
US10885890B2

Various systems and methods are disclosed to allow users to conveniently control characteristics of sounds generated by musical instruments. Exemplary systems include a control unit in communication with any number of audio processing devices (“APDs”). The control unit may be operable to transmit control signals to each of the APDs, wherein the control signals include settings information relating to one or more APD processing parameter values. The control unit may be further operable to receive an audio signal generated by an instrument and transmit the same to the APDs. Accordingly, upon receiving the control signal and the audio signal from the control unit, the APDs may update their processing parameters based on relevant settings information contained in the control signal and process the audio signal into a processed audio signal, based on the updated processing parameters.
US10885889B2

An apparatus and method for counterbalancing an instrument, such as a violin, is described. The apparatus includes a curved, flexible balancing section comprises a series of pockets into which weights can be placed. The curve causes the weights to tend to be positioned toward the center of the user's back, stabilizing the apparatus.
US10885888B2

Improvements in a tilting, lifting stand are presented. The tilt, lift stand is for a musical instrument stand or to elevate/tilt a speaker and or amplifier and rigidly supports a sousaphone brass type instruments, speaker or amplifier in an in a stored and in a playable or elevated position. The stand supports all or the majority of the weight of the instrument or speaker or amplifier in a static position to relieve the weight of the musical instrument or speaker or amplifier. The stand has legs that are extendable to rest on multiple levels as might be found in a stadium. The stand further has a securing mechanism that gently grasps a tubular section to hold the musical instrument. The speaker stand can be easily collapsed for transportation and storage.
US10885883B2

An electronic device may have a display. A gaze detection system may gather information on a user's point of gaze on the display. Based on the point-of-gaze information, control circuitry in the electronic device may produce image data for an image with areas of different resolutions. A full-resolution portion of the image may overlap the point of gaze. Lower resolution portions of the image may surround the full-resolution portion. The display may have a pixel array. The pixel array may include rows and columns of pixels. Data lines may be used to supply data to the columns of pixels in accordance with row selection signals supplied to the rows of pixels. Display driver circuitry may be used to display the image using the pixel array. The display driver circuitry may have row selection circuitry and column expander circuitry that are responsive to a resolution mode selection signal.
US10885881B2

Provided are a flexible display device and a control method thereof. The flexible display device includes: a base substrate; a display component located on the base substrate; a top-layer cover plate, configured to package the display component; a deformation layer, configured to create a deformation to drive the flexible display device to deform; and a control element, located on the base substrate and configured to control a deformation variable of the deformation layer.
US10885880B2

In accordance with some embodiments, a command streamer may use a cache of programmable size to cache commands to improve memory bandwidth and reduce latency. The size of the command cache may be programmably set by the command streamer.
US10885874B2

Systems and methods for displaying a cursor and a focus indicator associated with real or virtual objects in a virtual, augmented, or mixed reality environment by a wearable display device are disclosed. The system can determine a spatial relationship between a user-movable cursor and a target object within the environment. The system may render a focus indicator (e.g., a halo, shading, or highlighting) around or adjacent objects that are near the cursor. The focus indicator may be emphasized in directions closer to the cursor and deemphasized in directions farther from the cursor. When the cursor overlaps with a target object, the system can render the object in front of the cursor (or not render the cursor at all), so the object is not occluded by the cursor. The cursor and focus indicator can provide the user with positional feedback and help the user navigate among objects in the environment.
US10885863B2

The present disclosure provides a shifting register and a driving method thereof, a driving circuit, and a driving method of a panel. The shifting register includes: a shifting register unit circuit configured to transmit a signal of a first voltage terminal to an output terminal and an output control terminal according to a level of a pull-down node, and transmit a signal of a clock terminal to the output terminal and the output control terminal according to a level of a pull-up node; and a control unit circuit configured to transmit the signal of the first voltage terminal to the output terminal according to signals of a first control terminal and a second control terminal.
US10885856B2

A voltage drop compensation method and a device thereof, and a display device are disclosed. The voltage drop compensation method includes: obtaining an impedance distribution of the plurality of rows of pixels, and constructing a voltage drop model based on the impedance distribution of the plurality of rows of pixels; obtaining a source-end input current of the display panel; determining an input value of the voltage drop model based on the source-end input current, and determining at least one voltage drop corresponding to the at least one pixel row to be compensated according to the input value; and determining, according to the at least one voltage drop, at least one compensation grayscale which is in one-to-one correspondence with the at least one pixel row to be compensated respectively and performing grayscale compensation on the at least one pixel row to be compensated based on the at least one compensation grayscale.
US10885853B2

A shift register and a method for driving the same, a gate driving circuit and a display device. The shift register includes: an input sub-circuit configured to provide a signal at the signal input terminal to the pull-up node under control of the first clock signal terminal; an output sub-circuit configured to provide a clock signal at the second clock signal terminal to the signal output terminal under control of the pull-up node; and a pull-down sub-circuit configured to provide a signal at the power supply terminal to the signal output terminal under control of the third clock signal terminal.
US10885850B2

A display pixel is provided that is operable to support hybrid compensation scheme having both in-pixel threshold voltage canceling and external threshold voltage compensation. The display may include multiple p-type silicon transistors with at least one n-type semiconducting-oxide transistor and one storage capacitor. An on-bias stress phase may be performed prior to a threshold voltage sampling and data programming phase to mitigate hysteresis and improve first frame response. In low refresh rate displays, a first additional on-bias stress operation can be performed separate from the threshold voltage sampling and data programming phase during a refresh frame and a second additional on-bias stress operation can be performed during a vertical blanking frame. The display pixel may be configured to receive an initialization voltage and an anode reset voltage, either of which can be dynamically tuned to match the stress of the first and second additional on-bias stress operations to minimize flicker.
US10885849B2

A system is provided for controlling an array of pixels in a display in which each pixel includes a light-emitting device and a reference voltage source that controllably supplies a reference voltage having a magnitude that turns off the light-emitting device. While the reference voltage is coupled to a drive transistor, a control voltage is supplied to the gate of the drive transistor to cause the drive transistor to transfer to a node common to the drive transistor and the light-emitting device, a voltage that is a function of the threshold voltage and mobility of the drive transistor. During an emission cycle, the current conveyed through the light emitting device via the drive transistor is controlled by a voltage stored in the storage capacitor, which is a function of the threshold voltage and mobility of the drive transistor so that the current supplied to the light-emitting device remains stable.
US10885847B2

An organic light emitting diode display includes a flexible substrate, a semiconductor layer on the flexible substrate, and an overlapping layer. The transistor includes a driving transistor, a second transistor to transmit a data voltage transmitted through the data line to an input electrode of the driving transistor, and a third transistor including a gate electrode connected to the scan line, a first electrode connected to an output electrode of the driving transistor, and a second electrode connected to a gate electrode of the driving transistor. The third transistor includes two transistors connected in series to each other and connected to each other at a third node, the third node is formed in the semiconductor layer, an additional capacitance portion is formed in the semiconductor layer in the vicinity of the third node, and the overlapping layer overlaps the third node and the capacitance portion of the semiconductor layer.
US10885840B2

An image display apparatus includes: a region division unit that divides a display surface into a plurality of regions; a degree-of-influence calculation unit that calculates a first degree of influence representing a degree of influence of a brightness level of each of the regions on a brightness level of a respective region adjacent to the region; and a brightness correction unit that corrects a brightness level of each pixel. Influence of not only a location of connection in wiring in a display unit with an input terminal of a power supply for the display unit but also a wiring configuration of the display unit is reflected on the first degree of influence.
US10885838B2

An organic light emitting diode display includes a plurality of pixels configured to store a first data signal received through a corresponding data line during a scan period and to emit light according to a second data signal during a light emitting period of a frame, wherein the first data signal corresponds to the frame and the second data signal corresponds to a previous frame, and the scan period overlaps the light emitting period.
US10885834B2

An image display device includes pixel circuits arranged in a matrix configuration between a first power supply line and a second power supply line. Each of the pixel circuits includes a light-emitting element and a first circuit connected to the light-emitting element and configured to set a duration during which a current is supplied to the light-emitting element based on a result of comparing a first signal and a first direct current voltage. The first signal includes a triangular wave signal. The first direct current voltage is set in a prescribed period. At least one of the pixel circuits includes a second circuit connected in series to the first circuit. The second circuit is configured to control a current supplied to the first circuit based on a second direct current voltage set in a period different from the prescribed period.
US10885830B2

An electronic device includes a substrate and a plurality of light-emitting driving circuits. The plurality of light-emitting driving circuits are disposed on the substrate. Each of the plurality of light-emitting driving circuits includes a switch component and a pulse modulation unit. The switch component has a first terminal and a second terminal. The first terminal of the switch component is coupled to a comparison signal line. The pulse modulation unit has a first terminal and a second terminal. The first terminal of the pulse modulation unit is coupled to a data line, and the second terminal of the pulse modulation unit is coupled to the second terminal of the switch component.
US10885817B2

A flag displaying assembly for extending a limp flag includes a pole that is coupled to a surface so that the pole is substantially perpendicular to the surface. The pole is hollow. A plurality of holes is positioned in the pole. The plurality of holes extends linearly from proximate to a top of the pole toward a bottom of the pole. A flag is coupled to the pole proximate to the top. A forced air unit is coupled to the pole proximate to the bottom so that the forced air unit is in fluidic communication with the pole. The forced air unit is positioned to supply air through the pole to the holes. The air that exits the pole through the holes is positioned to extend the flag from the pole.
US10885814B2

An efficient share recovery technique for Shamir's secret sharing is provided. n share recovery apparatuses p0, . . . , pn−1 generate a share [r]i of a secretly shared value shared through Shamir's secret sharing, which becomes a random number r when restored. k share recovery apparatuses σ0, . . . , σk−1 calculate a share [b]i by subtracting the share [r]i from a share [a]i. The share recovery apparatus τk receives the shares [b]0, . . . , [b]k−1 from the share recovery apparatuses σ0, . . . , σk−1. The share recovery apparatus τk recovers shares [b]k, . . . , [b]k+m−1 using the shares [b]0, . . . , [b]k−1. m−1 share recovery apparatuses τk+1, . . . , τk+m−1 receive a share [b]j from the share recovery apparatus τk. m share recovery apparatuses τk, . . . , τk+m−1 calculate the share [a]j by adding the share [r]j to the share [b]j.
US10885811B2

A method of using a hand-made circuit board for learning includes: providing a hand-made circuit board which comprises a substrate; and a medium layer disposed on a surface of the substrate to form a pattern, wherein the medium layer has a notably paintable non-conductive zone configured with a plurality of electrical blocks, and the electrical blocks are discontinuously distributed in the notably paintable non-conductive zone, so that the electrical blocks on at least one cross-section of the notably paintable non-conductive zone are not electrically connected; and drawing a drawn conductive layer on the notably paintable non-conductive zone of the pattern by an end user, wherein the drawn conductive layer has conductive particles linking the electrical particle blocks in the notably paintable non-conductive zone, thereby electrically connecting the electrical particle blocks to complete a circuit line.
US10885800B2

Presented are systems and methods that analyze an individual's state based on selected criteria, and then adaptively provide stimuli to affect the individual's performance compared to established benchmarks and pre-set plans. The methods or systems can provide audio and/or tactile inputs to a human subject to obtain a specific performance state. A music or sound selection engine considers the sensory and environmental inputs and selects the appropriate music or auditory stimulus, with the intent to reach a desired state of flow. The methods and systems can employ multiple measurements of personal data that can correlate to the emotional state of a subject. By manipulating stimuli delivered to an individual, ultimate performance can be improved over various planning horizons.
US10885798B2

Disclosed is an autopilot-coupled traffic alert and collision avoidance systems (AP TCAS). The AP TCAS includes a an AP/automatic flight control system (AFCS) that is configured to receive a vertical speed setting after the issuance of a preventive resolution advisory, wherein the aircraft vertical speed setting exceeds the maximum vertical speed allowed by the resolution advisory, the AP/AFCS being further configured to: (1) modify the aircraft vertical speed setting so as to be less than the maximum vertical speed, and relay the modified second aircraft vertical speed to an autopilot system of the aircraft to automatically cause the aircraft to fly at a vertical speed in accordance with the modified second vertical speed setting; and (2) relay a command to the autopilot system to initiate an automatic, corrective flight maneuver if a current vertical speed of the aircraft is within a predetermined amount of the maximum vertical speed.
US10885797B2

Embodiments for managing drones by one or more processors are described. A condition related to the operation of a drone in a selected area is detected. A set of drone operating parameters associated with the operation of the drone in the selected area is changed based on the detecting of the condition. A signal representative of the changing of the set of drone operating parameters is generated.
US10885790B2

An apparatus configured for determining an intention to cut in in a vehicle may include a navigation module, a camera, a radar configured to obtain data about an external vehicle, a sensor configured to obtain data about behavior of the vehicle, and a processor configured to be electrically connected to the navigation module, the camera, the radar, and the sensor, wherein the processor is configured to obtain information associated with at least a portion of a road environment, traffic, or road curvature based on data obtained using at least a portion of the navigation module, the camera, the radar, or the sensor and adjust a parameter for determining an intention for a surrounding vehicle which is traveling in a second lane adjacent to a first lane where the vehicle is traveling to cut in, based on the obtained information.
US10885787B2

An object recognition method and apparatus are provided. The object recognition apparatus acquires localization information of a vehicle, acquires object information about an object located in front of the vehicle, determines a candidate region in which the object is predicted to exist in an image in front of the vehicle, based on the localization information and the object information, and recognizes the object in the image based on the candidate region.
US10885782B2

Methods for providing track condition information include receiving, at a first mobile track control station, a track condition notification. Such methods further include transmitting, from the first mobile track control station to a second mobile track control station in a network of mobile track control stations, the track condition notification. Such methods further include receiving, at the first mobile track control station from a third mobile track control station, affected track sector data regarding an affected track sector. Such methods further include transmitting, from the first mobile track control station to a first mobile track information station within a first vehicle, the affected track sector data, wherein the affected track sector data is configured to be used by the first mobile track information station to determine whether the first vehicle is within the affected track sector.
US10885775B2

A simulation platform may receive, from a plurality of image capture devices, a plurality of image streams that depict an event. The simulation platform may identify an object that is depicted in each of the plurality of image streams. The simulation platform may determine, for each of the plurality of image streams, respective image-based coordinates of a path associated with the object during the event. The simulation platform may determine, based on the respective image-based coordinates and timestamps of the plurality of image streams, simulation coordinates associated with a path of the object during the event. The simulation platform may detect, based on the simulation coordinates, that the object is involved in a collision during the event. The simulation platform may perform an action associated with detecting that the object is involved in the collision.
US10885766B2

A method for using a meter and a meter (10) adapted to determine an analyte concentration reading, the meter comprising a display (12) adapted to display information to a user of the meter, the display including information directed to a post-meal test-time alarm (22″) that is adapted to remind the user to obtain a post-meal analyte concentration reading, and at least one user input mechanism (15) adapted to allow the user to activate the post-meal test-time alarm.
US10885765B2

A vehicle safety system is for preventing child abandonment in a vehicle. The vehicle safety system may include a flow sensor for fuel in the vehicle, and a controller coupled to the flow sensor and a seat sensor. The controller may be configured to detect when the vehicle is in a fueling state based upon the flow sensor, and detect occupancy of a child safety seat based upon the seat sensor. The controller may be configured to if the vehicle does not enter the fueling state within a first time period, then cause the vehicle to enter a first alert state, and if the vehicle does not enter the fueling state within a second time period greater than the first time period, then cause the vehicle to enter a second alert state.
US10885749B2

To provide a gaming machine that can provide a novel game in which the game progression is varied, a method, and a program for providing a game. In the gaming machine 1, the symbol blocks B1 and B2 displayed in the block display region 66 move in the directions D1 and D2, which intersect in the direction of reel rotation, when moving in the symbol display region 60. That is, the symbol blocks B1 and B2 are added to the movement in the direction of reel rotation, and also move in a direction orthogonal to the direction of reel rotation. Therefore, compared to a case in which a symbol block moves in the direction of reel rotation, prediction by a player of the positions where the symbol blocks B1 and B2 are finally disposed is difficult.
US10885748B2

Monitoring systems for monitoring electronic card handling devices are disclosed. A monitoring system includes a monitoring server configured to receive card handling performance data from a number of electronic card handling devices. The monitoring server is further configured to associate received performance data with a corresponding electronic card handling device. The monitoring server is further configured to receive user input, and in response to the user input, identify a plurality of electronic card handling devices of the number of electronic card handling devices. The monitoring server is further configured to display a graphical user interface including at least one graphical representation of the performance data associated with the identified electronic card handling devices. Other related systems and methods are also disclosed.
US10885736B2

A flexible display assembly for a display device having a processor and a memory coupled to the processor includes a flexible display coupled to the processor for displaying graphical elements to a user in response to instructions from the processor. The flexible display is reversibly deformable between a first display configuration and a second display configuration. The display device further includes a mechanical assembly coupled to the flexible display for reversibly deforming the flexible display between the first display configuration and the second display configuration.
US10885734B2

Disclosed systems and methods relate to a smart access control device in a security system for monitoring an area. According to embodiments, a method can include receiving, by the smart access control device, from one or more sensors in the area, sensor data about the area. The method can also include analyzing the received sensor data and generating an alert for a user about the area based on the analyzed sensor data. The method can further include transmitting, by the smart access control device, a first signal comprising the alert to a monitoring server of the security system. Moreover, the method can include enabling, by the smart access control device, a person requesting access to the area to enter identification information and granting access to the area to the person based on the received identification information that is evaluated by the user.
US10885733B2

An access control device according to one embodiment includes an access control mechanism, a housing, an antenna array secured within the housing and including a first, second, and third antenna adapted to radiate away from the exterior side of the door, a processor, and a memory. The memory includes a plurality of instructions that, when executed, causes the access control device to determine signal strengths of signals received by the first, second, and third antennas from the mobile device, determine whether a location of the mobile device relative to the access control device is indicative of the mobile device user's intent to access the passageway based on the signal strengths, and automatically unlock the access control mechanism in response to the location being indicative of the user's intent to access the passageway.
US10885732B2

Multiple application devices (such as multiple application modules (MAMs) and multiple application units (MAUs) for receiving of signals in wireless distribution systems (WDSs), including but not limited to distributed antenna systems (DASs), and providing a variety of network services are disclosed. The multiple application devices are wireless telecommunication circuitry associated with wireless distribution components in a WDS. By associating multiple application devices into components of a WDS, network services and applications within the WDS can be provided. A multiple application device includes a multiple applications processor and is configured to: receive at least one of downlink and uplink signals; determine that a request has been received in one of the downlink and uplink for a service from another device; execute, via the at least one multiple applications processor, an application layer application corresponding to the requested service; and communicate application level information sufficient to perform the requested service.
US10885724B1

Systems and methods are disclosed herein for providing near real-time communication, such as a warning/notification, to a user based on analysis of various user and vehicle telematic data. The system includes a user with a wearable human telematic sensor providing telematic data about the wearer. Also, the system and method includes at least one vehicle telematic sensor configured to provide telematic data about the vehicle and/or surrounding environment. The various telematic data is communicated and processed to provide a notification back to the user such as a potential safety hazard. The safety hazard may be based upon sensed data specific to the user, specific to the vehicle, or combinations thereof.
US10885722B2

A vehicle may have a power train, a sensor interface, a storage device and a processing device. The sensor interface may receive sensor data samples during operation of a vehicle. The storage device may store the sensor data samples over a number of points in time. The processing device may analyze the sensor data samples stored in the storage device to detect a pattern and adjust an amount of power applied to the power train of the vehicle in response to the pattern. The pattern may be used to predict future conditions for the vehicle. The amount of power may be adjusted to improve power-resource-consumption efficiency.
US10885716B1

A mixed reality display system determines a shared coordinate system that is understood by a mixed reality application running on the mixed reality display system and an operating system of the mixed reality display system. The operating system can display a system user interface (UI) element in a mixed reality environment. The system UI element can be displayed at a location in a mixed reality environment. The location is specified by the mixed reality application according to the shared coordinate system. A size and orientation for displaying the system UI element may also be specified. Also, the location, size and orientation may be specified through application program interfaces (API) of the operating system. API calls may be made per frame to adjust the location, size or orientation per frame of the displayed mixed reality environment.
US10885710B2

In various embodiments, computerized methods and systems for dynamically updating a fully-immersive virtual environment based on tracked physical environment data. A computing device coupled to a HMD receives sensor data from a variety of sensors. The computing device can generate a virtual scene based on the received sensor data, whereby the virtual scene includes at least a portion of a virtual path that corresponds to at least a portion of a navigable path determined based on the received sensor data. The computing device can modify the virtual scene include a virtual obstruction that corresponds to a physical object detected based on additional sensor data received from the sensors. The modified virtual scene is presented to the user for display, so that the user can safely traverse the physical environment while staying fully-immersed in the virtual environment.
US10885697B1

One embodiment of the present disclosure presents a technique for generating an augmented reality effect. The technique includes receiving first input data including an image of a face. The technique further includes, based on the first input data, generating a first intermediate texture corresponding to an eyelid of the face with make-up. The technique further includes, based on the first input data, generating a second intermediate texture corresponding to the eyelid of the face without make-up. The technique also includes generating an output texture based on the first intermediate texture and the second intermediate texture. The technique further includes generating an effect by applying the output texture to second input data corresponding to a second image of a second face.
US10885693B1

In one embodiment, a computing system may access a plurality of first captured images that are captured in a first spectral domain, generate, using a first machine-learning model, a plurality of first domain-transferred images based on the first captured images, wherein the first domain-transferred images are in a second spectral domain, render, based on a first avatar, a plurality of first rendered images comprising views of the first avatar, and update the first machine-learning model based on comparisons between the first domain-transferred images and the first rendered images, wherein the first machine-learning model is configured to translate images in the first spectral domain to the second spectral domain. The system may also generate, using a second machine-learning model, the first avatar based on the first captured images. The first avatar may be rendered using a parametric face model based on a plurality of avatar parameters.
US10885680B2

In a medical imaging device that performs compressed sensing, it is possible to shorten a reconstruction time while maintaining image quality. The medical imaging device includes an image reconstructing unit that reconstructs an image by performing an iterative optimization operation of compressed sensing and a base selecting unit that selects a base transform which is used for the optimization every iteration. The base selecting unit may select a base on the basis of a predetermined base sequence or may select a base using weighting factors which are set for the bases in advance. The invention is applied to a medical imaging device such as an MRI apparatus, an ultrasonic imaging apparatus, or a CT apparatus.
US10885678B2

Techniques for facilitating quantum tomography are provided. In one example, a system includes a circuit generation component and a tomography analysis component. The circuit generation component generates tomography experiment data indicative of information for a set of tomography experiments based on quantum circuit data indicative of a machine-readable description of a quantum circuit. The tomography analysis component generates tomogram data based on experimental result data indicative of information associated with the tomography experiment data.
US10885665B2

Detection and analysis of a tangible component in a sample are implemented at lower cost. Provided is an analysis apparatus including a flow cell which includes a flow path for a sample, a branch section configured to cause light having passed through the flow path to branch at least to a first optical path and a second optical path, a first imaging section and a second imaging section configured to capture images of the sample in the flow path by using the light in the first optical path and the light in the second optical path, and a controller configured to process the captured images. The first imaging section and the second imaging section capture images that have the same angle of view but have different characteristics.
US10885658B2

The present disclosure relates to methods, apparatus or systems for determining a final pose (21) of a rendering device. An initial pose is associated with the rendering device. A module (25) determines an intermediate pose (26) according to data from absolute pose sensors (23) and/or differential pose sensors (22). A module (27) determines the final pose (21) according to, first, a difference between the intermediate pose (26) and the initial pose information, second, the data from differential pose sensors (22), and third an evaluation of the visual perception of movements for current images (24) displayed on the rendering device.
US10885656B2

[Object] To perform more stable and highly accurate attitude estimation. [Solution] The attitude optimization unit optimizes the articulation position, the angle, the number of articulations, and the like which are attitude parameters of a human body model (tree structure) by a plurality of optimization techniques so as to match a region in which a human body can exist, and switches among a plurality of optimization techniques and uses an optimum technique. Note that optimization techniques include 1. initial value, 2. algorithm, and 3, restriction, and optimization is performed by switching among these three. For example, it is possible to apply the present disclosure to an image processing device that performs image processing of optimizing the articulation position and angle of a human body model.
US10885652B2

A trailer angle detection system for a vehicle towing a trailer includes a camera disposed at a rear portion of a vehicle so as to have a field of view exterior and rearward of the vehicle, and an image processor operable to process image data captured by the camera. Responsive to processing of a region of interest of image data captured by the camera, the trailer angle detection system determines the location of a known patterned target at the trailer being towed by the vehicle. Responsive to determination of the location of the target, the system determines a region of interest of the captured image data that encompasses the target. Responsive to processing of image data of the region of interest and determining the location of the target relative to the vehicle centerline, the trailer angle detection system calculates an angle of the trailer relative to the vehicle centerline.
US10885649B2

A method of constructing a three-dimensional model of an internal surface of a tubular structure comprises obtaining image data from an area of the internal surface of the structure, obtaining measured height profile data from the internal surface in a plurality of sub-regions of the area, for example using a multi-finger caliper tool, determining image properties from the image data, correlating the measured height profile data with the image properties in the sub-regions, and constructing expected height profile data for at least part of the area outside the sub-regions using the correlated measured height profile data and image properties.
US10885648B2

A method of reconstructing a three dimensional image using a structured light pattern system is provided as follows. A class identifier of an observed pixel on a captured image by a camera is extracted. The observed pixel has a coordinate (x, y) on the captured image. A first relative position of the x coordinate of the observed pixel in a tile domain of the captured image is calculated. A second relative position of one of a plurality of dots in a tile domain of a reference image using the extracted class identifier is calculated. A disparity of the observed pixel using the first relative position and the second relative position is calculated.
US10885640B2

A vehicle environment detection system (2) that includes a detection device and a processing unit (5), arranged to detect at least two feature points at objects (11) outside a vehicle (1). Each feature point constitutes a retrievable point that has a fixed position (x1, y1; x2, y2) on the object (11). The processing unit (5) is arranged to determine the positions (x1, y1; x2, y2) and the resulting velocities (vr1, vr2) for each one of the feature points for multiple frames by use of a feature point tracker; and determine a reference position (x0, y0), a corresponding reference velocity (vr0) and reference angular velocity (ω), constituting a common motion state for the object (11), by use of the results from the feature point tracker. A feature point tracker is constituted by a tracking algorithm which is arranged to track multiple features and which includes temporal filtering.
US10885639B2

For each frame of a video, a determination is made whether an image of a hand exists in the frame. When at least one frame of the video includes the image of the hand, locations of the hand in the frames of the video are tracked to obtain a tracking result. A verification is performed to determine whether the tracking result is valid in a current frame of the frames of the video. When the tracking result is valid in the current frame of the video, a location of the hand is tracked in a next frame. When the tracking result is not valid in the current frame, localized hand image detection is performed on the current frame.
US10885637B2

A system for dynamically tracking and indicating a path of an object comprises an object position system for generating three-dimensional object position data comprising an object trajectory, a software element for receiving the three-dimensional object position data, the software element also for determining whether the three-dimensional object position data indicates that an object has exceeded a boundary, and a graphics system for displaying the object trajectory.
US10885634B2

Systems and method of identifying a horizon depicted in an image are presented herein. Information defining an image may be obtained. The image may include visual content comprising an array of pixels. The array may include pixel rows. Parameter values for a set of pixel parameters of individual pixels of the image may be determined. Individual average parameter values of the individual pixel parameters of the pixels in the individual pixel rows may be determined. Based on the average parameter values a pixel row may be identified as depicting a horizon in the image.
US10885632B1

Cameras may be used to acquire information about objects in three-dimensional (3D) space. Described herein are techniques for determining a calibration between pixel coordinates in a two-dimensional image acquired by the camera and coordinates in the 3D space. In one implementation, the target assembly is positioned at a known 3D location and particular optical targets thereon having known 3D coordinates are activated sequentially. Images are acquired and processed to determine the pixel coordinates of the respective optical targets. Calibration data, such as a transformation matrix, is generated based on the information about which optical target is active in a given acquired image, the pixel coordinates of the optical target in that acquired image, and the known 3D coordinates of the individual optical target.
US10885626B2

An identifying apparatus may include: an imaging unit configured to store multiple identifiers that are trained to identify, from images of objects, the presence or absence of a detection target included in the objects, the identifiers being stored in association with attributes of the objects, and to capture an image of a predetermined object; a specifying unit configured to specify an attribute of the predetermined object; a selecting unit configured to select, from the multiple identifiers, a first identifier stored in association with the specified attribute; an input unit configured to input the image of the predetermined object to the first identifier; and an output unit configured to output the presence or absence of the detection target included in the predetermined object, which is output from the first identifier.
US10885623B2

A method of detecting a joint failure of a semiconductor die stack is provided. The method may include providing the semiconductor die stack including a base substrate, a lower semiconductor die stacked on the base substrate, and an upper semiconductor die stacked on the lower semiconductor die opposite to the base substrate. The lower semiconductor die may include first through silicon vias (TSVs). Heat may be supplied to a bottom surface of the base substrate opposite to the lower semiconductor die. A thermographic image of a top surface of the upper semiconductor die opposite to the lower semiconductor die may be obtained. Whether the joint failure exists in the semiconductor die stack may be discriminated, with the thermographic image, based on a temperature difference between regions of the thermographic image corresponding with regions of the first TSVs.
US10885621B2

An inspection system and method to detect the presence or absence of ophthalmic lenses in a plastic shell just before the seal is applied comprising a high resolution imaging device suitably integrated with an optical module; a UV illumination module suitably mounted below the ophthalmic lens holder; a Visible LED based Top lighting module suitably mounted on Top of the Ophthalmic lens holder; the inspection system which captures images of the lens immersed in a saline solution in a the plastic shell; analyzing the image and determining the characteristics of the lens perimeter and the optical center; making a decision to reject the inspected item if the analyzed image indicates the presence of a flipped, multiple and folded lens or the absence of the lens; making a decision to accept the inspected item, if the analyzed image indicates the presence of a single lens positioned in the correct orientation.
US10885620B2

Provided is an image processing system which determines at least one object using a low function device and a high function device having higher calculation capacity than the low function device. The low function device includes a part configured to output a first determination result which identifies the objects by applying a first convolution neural network to captured images of the objects, and a part configured to output the captured image to the high function device when the first determination result meets a predetermined condition. The high function device includes a part configured to apply a second convolution neural network preliminarily learned from a sample which is at least partially common to the first neural network to the captured image and to output a second determination result which identifies the object.
US10885606B2

A video management system may identify moving objects in a scene, and may obscure the moving object. Additionally, the video management system may identify parts of the scene that are not moving, and may identify pixels having a color falling within a range which may be associated with human skin, and may obscure such pixels. The video management system may present an image to a monitor including the obscured moving object and the obscured pixels having the color falling within the range associated with human skin.
US10885596B1

A specialized server within a real estate showing management system creates a showing appointment for a showing agent to show a listing and a set of geo-fences around the listing when the appointment is created. At a particular time before the showing, the specialized server notifies a showing agent mobile device to download the set of geo-fences and, when requested, provides the set to the mobile device. The mobile device notifies the specialized server when it breaches a geo-fence within the set. A key controller also notifies the specialized server when the showing agent opens the key controller to retrieve a key to the listing from the key controller. The specialized server determines that the showing has started when the two notifications and the beginning time of the showing appointment are within a predetermined time range. The specialized server then notifies property electronic devices to turn on.
US10885587B1

A system comprising a plurality of mobile devices, an insurance policy database, and a server is disclosed. The server may be configured to receive barometric data from one or more sensors in each of the plurality of mobile devices, identify that the barometric data indicates an occurrence of at least one catastrophic event, identify a geographic region affected by the at least one catastrophic event, access the insurance policy database to determine a number of insurance policies in the geographic region, estimate a number of catastrophe resources needed to handle the number of insurance policies in the geographic region, and assign at least one of the catastrophe resources to each of the insurance policies in the geographic region.
US10885585B2

The present invention processes and distributes Level 2 financial data. This invention comprises a constituent component that identifies various pieces of information that are contained in stock feeds. These pieces of information are identified and keys are generated based on the various pieces of information and combinations of pieces of information. The information in the incoming stock feeds can be sorted and processed based on a particular key or keys depending on the desires of a particular client. In addition, new keys can be generated based on the preference of a particular client. This flexibility to create the various keys to be used to process feed information is different from conventional methods that use only a standard set of sorting and processing criteria for all feeds and for all clients.
US10885583B2

Methods, devices, and systems for facilitation of efficient processing of a plurality of electronic message packets communicated to an application via a network from a plurality of message sources. The facilitation involves receiving each of the plurality of electronic message packets from the network, and storing, upon receipt thereof, each of the received electronic message packets in a single buffer irrespective of which message source of the plurality of message sources each of the received electronic message packets originated from, the single buffer being accessible by the application.
US10885580B2

The present invention, EscrowTab mobile application system and method comprises automating, reviewing, executing, and transmitting documents used in real estate financial transactions by providing document data visualization on a mobile device allowing for review and execution of financial closing documents, such as promissory notes, deeds of trust and financial documents on a mobile device such as a tablet and relaying these documents to and from the originating financial institution, via means of the internet or dedicated communications media.
US10885579B2

Systems and processes are disclosed for providing customized user interfaces for facilitating personal payment transactions. In certain embodiments, disclosed embodiments may generate a dynamic and customized interface for effecting the personal payment transaction by, for example, providing one or more options for the payer to fund the payment. The disclosed embodiments may provide an interface that includes one or more suggested recipients for identifying the payee associated with the payment transaction. The disclosed embodiments may also provide an interface that includes one or more routing options to route the payment. The disclosed embodiments may also provide an interface that provides one or more communication channel options for parties associated with the personal payment transaction to communicate.
US10885557B2

A system for selecting an image to accompany text from a user in connection with a social media post. The system includes receiving text from the user; identifying one or more search terms based on the text; identifying candidate images from images in one or more image databases using the search terms, where the candidate images comprise a sponsored image; presenting one or more candidate images to the user, where the sponsored image is presented preferentially compared to other candidate images; receiving from the user a selected image from the one or more candidate images; generating the social media post comprising the selected image and the user-submitted text; and transmitting the social media post for display.
US10885544B2

Systems and methods are disclosed for measuring the effectiveness of a marketing and advertising campaign directed at consumers. The systems and methods receive data corresponding to consumers that were served impressions in the campaign, and match the data to identifiers for credit records of the consumers. Credit record activity information in the credit records related to products and services of the campaign can be retrieved and potentially depersonalized. The credit record activity information can be the basis of a campaign report for adjusting and optimizing the campaign, in the case of an in-flight campaign report, or future campaigns, in the case of a post-campaign report. More accurate measurement of the effectiveness of the campaign can be obtained due to linking of a consumer's activity with the campaign.
US10885541B1

A method of payment using rewards points includes receiving authentication data and a payment amount from a customer's mobile device, determining an amount of rewards points available to fund the payment amount in a rewards account associated with the customer, and sending selectable payment options to the mobile device. The selectable payment options include an option to redeem a portion of the rewards points amount to fund a portion of the payment amount. The method also includes receiving a customer selection of at least one of the selectable payment options from the mobile device and sending a form of payment for the payment amount from the account management system at the mobile device. The form of payment is configured for presentation to a point of sale device.
US10885540B2

Systems and methods for providing campaign driven offer distribution include receiving, from a service provider device associated with a service provider, first campaign information for a first campaign. A first offer that has been configured to be irredeemable by the first customer and that includes a first offer condition associated with the first campaign information that must be satisfied to reconfigure the first offer to be redeemable by the first customer is provided for display on a first customer device. A notification indicating the first offer condition has been satisfied is received. In response to receiving the notification indicating the first offer condition has been satisfied, the first offer is reconfigured to be redeemable by the first customer. A notification indicating a status change with the first offer that causes the first offer to be displayed on the first customer device is communicated to the first customer device.
US10885532B2

Demographic assessment of information is facilitated using targeted location oversampling. In one example, a device determines mobile devices communicatively coupled to a base station device associated with a first defined region, wherein the first defined region is relative to a defined location of interest. The device can transmit a set of instructions to the mobile devices that instruct the mobile devices to power on respective location information components configured to transmit location information. The respective location information can be configured to transmit respective global positioning system information for the mobile devices. The device can also determine which ones of the mobile devices are within a second defined region based on respective location information received from the mobile devices.
US10885529B2

During a conversation between a customer and a customer support representative, suggestions may be presented to the customer support representative to upsell a product to the customer. Information about the customer and/or information about the conversation may be processed by a computer to determine when to suggest the upsell to the customer support representative and the one or more products to be upsold. The determination may be performed by computing features from the information about the customer and the information about the conversation, and processing the features with one or more classifiers.
US10885527B1

A financial institution computing system includes a network interface, a database storing transaction data of the user and financial data for a plurality of entities, and a processor. The processor receives location data of the mobile device the financial data for at least one of the entities, determines a financial risk of the user based on a comparison of the location of the mobile device with the location of the at least one entity and based on at least one of the financial data for the at least one entity and the transaction data of the user, generate a notification in response to the financial risk exceeding a financial risk threshold, and cause the notification to be transmitted to the mobile device. The notification indicates that the user is susceptible to a financial risk based on the location of the user with respect to the at least one entity.
US10885517B2

There are provided systems and methods for a preloaded digital wallet token for networkless transaction processing. A user may utilize a communication device while shopping at physical merchant locations, such as retail storefronts, where the communication device may provide transaction processing services through a mobile application executing on the communication device. The communication device may provide transaction processing services through the application in an offline environment by utilizing a preloaded digital token having encrypted data, for example, where the communication device loses network connectivity. The encrypted data may include information necessary to resolve transaction processing by a merchant device receiving the token from the communication device. Moreover, the encrypted data may include limitations on use of the token for transaction processing, such as location limitations and/or transaction amount or time limits. The token may also be updated when the communication device reconnects to a network.
US10885514B1

A method for controlling a near field communication between a device and a transaction card is disclosed. The method includes the steps of capturing, by a front-facing camera of the device, a series of images of the transaction card and processing each image of the series of images to identify a darkness level associated with a distance of the transaction card from the front of the device. The method includes comparing each identified darkness level to a predetermined darkness level associated with a preferred distance for a near field communication read operation and automatically triggering a near field communication read operation between the device and the transaction card for the communication of a cryptogram from an applet of the transaction card to the device in response to the identified darkness level corresponding to the predetermined darkness level associated with the preferred distance for the near field communication read operation.
US10885508B2

A device and method in a vehicle control unit for providing electronic commerce transaction authentication are provided. Upon receiving an electronic commerce transaction request relating to a transaction source, the vehicle control unit authenticates the transaction source against a vehicle travel route parameter by comparing the source location data with the vehicle travel route parameter. When the source location data compares favorably with the vehicle travel route parameter, an electronic commerce authentication is generated in response to the request, and transmitted.
US10885501B2

The present invention relates to an accredited certificate issuance system based on a block chain and a method using the same, and an accredited certificate authentication system based on a block chain and a method using the same, which disenable a leak of a personal key by autonomously generating, storing and managing the personal key by a random number generator mounted in a terminal in which it is impossible to install a function or an additional program for physically accessing; enable a public key for accredited certification to be stored in a block chain of electronic wallets mounted in block chain retention servers via a P2P network-based distribution database, not in a server of an accredited certificate authority (CA), and thus incur almost no costs for maintenance and for operating the established accredited certificate issuance system; and can perform an accredited certification process without ActiveX.
US10885482B2

A method for improving an action implementation process is provided. The method includes detecting a cancelation or a rescheduling for an originally planned activity of a user to be performed during a first time period. An alternative activity for replacement of the originally planned activity is determined. It is determined that a second time period necessary for performing the alternative activity exceeds the first time period and in response, an executable action is generated. The executable action is configured to be combined with the alternative activity such that the alternative activity may be accommodated. Machine learning software code is executed top determine if the user would be likely to accept the alternative activity if the additional executable action exceeds a specified threshold. In response, the executable action is automatically executed in real time thereby enabling the alternative activity.
US10885480B2

An adaptive order processing terminal includes a display, a motion sensor, and a configuration manager. The display is configured to display electronic orders for preparation. The motion sensor is configured to detect distance to and motions performed by a user working in proximity to the terminal. The configuration manager is coupled to the display and the motion sensor, and is configured to capture movements of the user from the motion sensor, to transmit the motions via first messages to a backend server, to receive second messages from the backend server providing 3-dimensional (3D) gestures that correspond to the movements, and to modify display of the electronic orders on the display in accordance with the 3D gestures.
US10885479B1

In some examples, a service provider may determine, for a time of day and a day of a week, orders received by individual merchants of a plurality of merchants over a past period of time. The service provider may further determine, for the time of day and day of the week, based at least in part on the orders received over the past period of time, a first merchant predicted to receive an order. Based at least in part on a pickup location of the first merchant, the service provider may send a communication to a first courier device associated with a first courier of a plurality of couriers. For example, the communication may include location information for a recommended location to which the first courier is to move to be in position for picking up an order from the merchant that is predicted to receive the order.
US10885475B2

A method and system may provide automated passenger seat assignment procedures for an airline. A server device may determine passengers for a departing flight who are eligible to receive seat assignment notifications. When an eligible passenger is next in a standby or upgrade queue, the server device may transmit an electronic communication such as an email, short message service (SMS) message, push notification, etc., to the passenger's network-enabled device. The electronic communication may indicate that a seat assignment is available and may provide instructions for accepting or declining the available seat assignment. If the user accepts, for example, by transmitting an electronic reply message to the server device accepting the available seat assignment, the server device may transmit an electronic boarding pass to the user corresponding to the available seat assignment.
US10885470B2

Computer-based systems and methods add extra terms to the objective function of machine learning systems (e.g., neural networks) in an ensemble for selected items of training data. This selective training is designed to penalize and decrease any tendency for two or more members of the ensemble to make the same mistake on any item of training data, which should result in improved performance of the ensemble in operation.
US10885461B2

Techniques are described for classifying seasonal patterns in a time series. In an embodiment, a set of time series data is decomposed to generate a noise signal and a dense signal, where the noise signal includes a plurality of sparse features from the set of time series data and the dense signal includes a plurality of dense features from the set of time series data. A set of one or more sparse features from the noise signal is selected for retention. After selecting the sparse features, a modified set of time series data is generated by combining the set of one or more sparse features with a set of one or more dense features from the plurality of dense features. At least one seasonal pattern is identified from the modified set of time series data. A summary for the seasonal pattern may then be generated and stored.
US10885458B2

There is provided a method for implementing an algorithm for forming, or synthesizing, quantum circuits on a system capable of performing the quantum circuit synthesis by using a deterministic walk (i.e. a pseudo-random walk with a random or pseudo-random starting point). In one implementation, the deterministic walk is performed using a parallel search algorithm. In an implementation of the parallel search algorithm, a user utilizes a programming language to write instructions for a compiler. Then, a meet in the middle approach is utilized to separate the circuit into two halves. Next, the parallel search technique is used to find a claw, or a pair, which satisfies the circuit analysis. Subsequently there is the production of a result and/or a synthesis of the circuit if the pair is found.
US10885453B2

A calculation device according to the present application includes an acquiring unit and a calculation unit. The acquiring unit that acquires a plurality of pieces of first triple information indicating a relationship related to three types of elements and a plurality of pieces of second triple information obtained based on a conceptual system in the plurality of pieces of the first triple information. The calculation unit that calculates statistical information related to the plurality of pieces of the first triple information based on the number of pieces of the first triple information associated with each of the plurality of pieces of the second triple information acquired by the acquiring unit.
US10885451B2

A method for identifying and projecting recurrent event patterns in an Information Technology (IT) infrastructure is disclosed. The method includes deriving at least one time period based on historical events data; grouping the historical events data comprising a plurality of events based on the at least one time period to create a plurality of data points sets; creating an event corpus comprising each of the plurality of events arranged based on frequency of occurrence across the plurality of data points sets; identifying one or more events that have highest frequency of occurrence within the event corpus; determining one or more data points sets from the plurality of data points sets in which the one or more events have occurred; and computing a projected frequency of occurrence of the one or more events in future time periods.
US10885450B1

Described herein is a system for automatically detecting invalid events in a distributed computing environment. The system for automatically detecting invalid events may include sub-systems and a learning engine. The learning engine may generate a rule set for each sub-system specifying circumstances under which an event is considered invalid specific to the sub-system using machine learning. Sub-systems may detect an invalid event being propagated through the distributed computing environment based on a set of rules specifying circumstances under which an event is considered invalid specific to the sub-system and/or metadata of the event.
US10885447B2

In a data processing method executed by a computer: inputting, in a third trained model, first output data corresponding to first input data for a first trained model to obtain second output data, the third trained model being acquired through training in which (i) output data of the first trained model is used as training data, and (ii) output data of a second trained model acquired by converting the first trained model is used as label data; obtaining first label data of the first input data; and retraining the first trained model using first differential data corresponding to differences between the second output data and the first label data.
US10885441B2

The present disclosure includes methods and systems for generating digital predictive models by progressively sampling a repository of data samples. In particular, one or more embodiments of the disclosed systems and methods identify initial attributes for predicting a target attribute and utilize the initial attributes to identify a coarse sample set. Moreover, the disclosed systems and methods can utilize the coarse sample set to identify focused attributes pertinent to predicting the target attribute. Utilizing the focused attributes, the disclosed systems and methods can identify refined data samples and utilize the refined data samples to identify final attributes and generate a digital predictive model.
US10885438B2

A neural network is structured with a plurality of levels of nodes. Each level has a level-specific stabilization parameter that adjusts a learning rate, at a corresponding level, during training. The stabilization parameter has a value that varies inversely relative to a change in an objective training function during back-propagation of the error through the level.
US10885437B2

Security systems and methods for detecting intrusion events include one or more sensors configured to monitor an environment. A pruned convolutional neural network (CNN) is configured process information from the one or more sensors to classify events in the monitored environment. CNN filters having the smallest summed weights have been pruned from the pruned CNN. An alert module is configured to detect an intrusion event in the monitored environment based on event classifications. A control module is configured to perform a security action based on the detection of an intrusion event.
US10885429B2

An analog neuromorphic circuit is disclosed having resistive memories that provide a resistance to an input voltage signal as the input voltage signal propagates through the resistive memories generating a first output voltage signal and to provide a resistance to a first error signal that propagates through the resistive memories generating a second output voltage signal. A comparator generates the first error signal that is representative of a difference between the first output voltage signal and the desired output signal and generates the first error signal so that the first error signal propagates back through the plurality of resistive memories. A resistance adjuster adjusts a resistance value associated with each resistive memory based on the first error signal and the second output voltage signal to decrease the difference between the first output voltage signal and the desired output signal.
US10885428B2

A neural device to which a conditioned response function is imparted and a driving method thereof are disclosed. Quantum dots and a polymer insulating layer are formed between upper and lower electrodes. Conductive filaments are formed at interfaces between the quantum dots and the polymer insulating layer. When a positive pulse, which is an unconditioned stimulus signal, is applied, the conductive filaments are formed, and a low resistance state is implemented. As the number of applications of a negative pulse, which is a conditioned stimulus signal, increases, the neural device is switched from a high resistance state to the low resistance state. Through this, the neural device having learning ability for the conditioned stimulus signal may be implemented and driven.
US10885426B2

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for augmenting neural networks with an external memory. One of the systems includes a controller neural network that includes a Least Recently Used Access (LRUA) subsystem configured to: maintain a respective usage weight for each of a plurality of locations in the external memory, and for each of the plurality of time steps: generate a respective reading weight for each location using a read key, read data from the locations in accordance with the reading weights, generate a respective writing weight for each of the locations from a respective reading weight from a preceding time step and the respective usage weight for the location, write a write vector to the locations in accordance with the writing weights, and update the respective usage weight from the respective reading weight and the respective writing weight.
US10885414B2

A barcoded indicator operative to provide a machine-readable indication of exceedance of at least one threshold by at least one product quality affecting parameter, the barcoded indicator including at least a first barcode and at least a second barcode, the at least a second barcode being in a second barcode unreadable state prior to exceedance of the at least one threshold and upon exceedance of the at least one threshold the at least a first barcode becoming unreadable and generally simultaneously the at least a second barcode becoming readable.
US10885410B1

Systems, methods, computer-readable media, and apparatuses to securely generate barcodes. In one example, an application may receive a request to generate a barcode. The application may read encrypted data generated by a contactless card and transmit the encrypted data to a server for verification. The server may verify the encrypted data and generate an encrypted authentication token. The server may transmit the encrypted authentication token to the application. The application may provide the encrypted authentication token to the contactless card. The contactless card may generate the barcode using the encrypted authentication token.
US10885408B2

A document generation system generates a plurality of form data of a first file format from document data; converts the plurality of form data of the first file format into a plurality of form data of a second file format; causes a display unit to display the plurality of form data of the converted second file format so as to be able to accept a storage request; and, in response to accepting a storage request for the plurality of form data of the second file format displayed on the display unit, combines the plurality of form data of the first file format corresponding to the plurality of form data of the second file format into data of the first file format and store the combined data in a storage unit.
US10885407B2

A system and method for converting imaging data, for example, medical imaging data, to three-dimensional printer data. Imaging data may be received describing for example a three-dimensional volume of a subject or patient. Using printer definition data describing a particular printer, 3D printer input data may be created from the imaging data describing at least part of the three-dimensional volume.
US10885399B2

A method and apparatus for automatically performing medical image analysis tasks using deep image-to-image network (DI2IN) learning. An input medical image of a patient is received. An output image that provides a result of a target medical image analysis task on the input medical image is automatically generated using a trained deep image-to-image network (DI2IN). The trained DI2IN uses a conditional random field (CRF) energy function to estimate the output image based on the input medical image and uses a trained deep learning network to model unary and pairwise terms of the CRF energy function. The DI2IN may be trained on an image with multiple resolutions. The input image may be split into multiple parts and a separate DI2IN may be trained for each part. Furthermore, the multi-scale and multi-part schemes can be combined to train a multi-scale multi-part DI2IN.
US10885389B2

A first imaging simulation section in a learning device generates image data that indicates a learning image captured by the imaging section from image data on the learning image, and a second imaging simulation section generates image data that indicates the learning image captured by an imaging section from the image data on the learning image. A plurality of parameter generation sections each generate a characteristic difference correction parameter for making characteristics of student data identical to characteristics of teacher data by learning, assuming one of the generated image data as the teacher data and the other image data as the student data, and the parameter generation sections store the generated characteristic difference correction parameters in a plurality of database sections. A characteristic difference correction section corrects one image data having a lower performance to image data having a high performance, using the stored characteristic difference parameters.
US10885378B2

Embodiments of the present invention relate to methods, systems, and computer program products for container image management. In a method, an image layer in a container image may be received by one or more processors, and the container image is to be stored in an image server comprising a group of image layers. A base portion may be selected by one or more processors from the group of image layers based on a similarity analysis between the image layer and the group of image layers. A patch portion may be generated by one or more processors based on a difference between the image layer and the selected base portion. With these embodiments, the container image may be stored based on multiple image layers, and thus the container image may be maintained in a much finer granularity so as to reduce requirements on the bandwidth and time cost for transmitting the container image.
US10885372B2

A Deep Neural Network (DNN) having a plurality of recognition tasks with different scales makes it possible to perform recognition processing in a network where identification layers are branched from one intermediate layer. An image recognition apparatus for recognizing a target includes a first acquisition unit configured to acquire from an input image a first intermediate feature amount for performing first identification, a first identification unit configured to perform the first identification based on the first intermediate feature amount, a second acquisition unit configured to acquire from the first intermediate feature amount a second intermediate feature amount for performing second identification having a larger scale than the first identification, and a second identification unit configured to perform the second identification based on the second intermediate feature amount.
US10885371B2

A mobile apparatus is provided that includes an image sensor for converting an optical image into an electrical signal. The optical image includes an image of a vehicle license plate. The mobile apparatus includes a license plate detector configured to process the electrical signal to recover information from the vehicle license plate image. Upon capturing of the video that includes the image, a device operation instructor will dynamically determine a highest score of assigned object image scores for each frame of the video generate an operation adjustment control if the determined highest score is less than a predetermined score threshold, which is in turn dynamically displayed during continuous capture of the video by the image sensor.
US10885367B2

A parking enforcement device can be secured to a surface adjacent to the area designated as NO PARKING. The enforcement device can include a camera aimed towards the area designated as NO PARKING and monitor this area for the entry of a vehicle. A parking violation is determined to have occurred upon determining that the vehicle has entered the area designated as NO PARKING, and image data of the entry of a vehicle into the NO PARKING area that was captured by the camera can be relayed to a remote computing system. The parking enforcement device can be provided as a bollard that includes a camera secured to a center pole extending vertically upwards inside of the bollard. The camera can be located along the center pole so that the camera views outward from the bollard via a window section of the bollard.
US10885364B2

Various example implementations of the present invention are directed towards systems and methods to quantify biometric acquisition and identification. A test facility evaluates the acquisition by a biometric station of biometric information. Evaluations can relate to biometric information acquisition speed, rates of acquisition failure, rates of biometric information extraction failure, rates of biometric match failure, calculating a true identification rate, and/or calculating other metrics related to quantifying biometric acquisition and identification. The test facility can calculate an efficiency metric and an effectiveness metric of the quantification determinations, and output such results.
US10885359B2

A non-transitory storage medium storing an image transmission program that is executed on an in-vehicle device mounted in a vehicle having an illuminance detection unit configured to detect illuminance around the vehicle, an imaging unit configured to acquire an image of surroundings of the vehicle, and a communication unit configured to perform communication with an information center, the image transmission program includes: an image acquisition step of acquiring the image which the imaging unit acquires as an intersection image based on the illuminance which the illuminance detection unit detects at a position in front of the intersection by a predetermined distance; and a transmission step of causing the communication unit to transmit a data representing the intersection image to the information center.
US10885358B2

The limitation, which applies when capturing traffic signs in a conventional manner using a camera which is oriented to the front with respect to the vehicle, to capturing traffic signs that are located ahead in the driving direction and the unique association between traffic signs that apply only to one direction and the driving direction of the capturing vehicle are eliminated by way of a camera that is oriented to the rear with respect to the vehicle, for example a rear-view camera of the vehicle, also being operated during forward travel in order to also capture traffic signs that apply to the opposite direction and are located behind the vehicle at the time they are captured, and the position of said traffic signs, and by way of data sets generated therefrom being transmitted to the database together with the data sets generated by means of the front camera.
US10885357B2

A recording medium records an information processing program for causing a computer to execute processing including: acquiring an image from an imaging device provided in a first moving body; estimating a self-position of the first moving body by a first algorithm based on the image; generating a first point group that indicates a three-dimensional shape around the first moving body; generating a second point group that indicates the three-dimensional shape by a second algorithm based on data used in the first algorithm; merging the first point group and second point group so as to generate a third point group; extracting a space of an area group where a second moving body is parked from the third point group based on a movement track of the first moving body and information regarding a size of the second moving body; dividing the extracted space; and specifying each area of the area group.
US10885355B2

Provided is an object detection device including: a detection unit configured to detect objects for every detection period to output detection information containing a reliability for each of the detected objects; a determination unit configured to: increment a detection count for each of the objects; calculate, for each of the objects, a sum of latest N reliabilities in the detection period; and determine, as a normally recognized object, an object for which the sum is equal to or larger than a first threshold value, which is set in advance depending on the detection count; and a control unit configured to output, as normally detected object information, detection information on the normally recognized object.
US10885350B2

A crowd type classification system of an aspect of the present invention includes: a staying crowd detection unit that detects a local region indicating a crowd in staying from a plurality of local regions determined in an image acquired by an image acquisition device; a crowd direction estimation unit that estimates a direction of the crowd for an image of a part corresponding to the detected local region, and appends the direction of the crowd to the local region; and a crowd type classification unit that classifies a type of the crowd including a plurality of staying persons for the local region to which the direction is appended by using a relative vector indicating a relative positional relationship between two local regions and directions of crowds in the two local regions, and outputs the type and positions of the crowds.
US10885349B2

A method and apparatus for detecting fine movement of a subject in video images, and for distinguishing over noise and other image artefacts. The video images are processed to detect movement of image features through the sequence and to calculate how spatially distributed those moving features are across the image. The movement tracks of the features may be subject to principal component analysis and a spatial dispersion measure calculated by the product of the distance between tracked image features and the contributions of those image features to the most significant principal components. If the spatial dispersion measure is high then this is indicative of feature movement being dispersed widely across the image, whereas if it is low, it is indicative of the main feature movements being concentrated in one part of the image, and thus more likely to represent subject movement than noise.
US10885341B2

Methods and systems for performing sequence level prediction of a video scene are described. Video information in a video scene is represented as a sequence of features depicted each frame. An environment state for each time step t corresponding to each frame is represented by the video information for time step t and predicted affective information from a previous time step t−1. An action A(t) as taken with an agent controlled by a machine learning algorithm for the frame at step t, wherein an output of the action A(t) represents affective label prediction for the frame at the time step t. A pool of predicted actions is transformed to a predicted affective history at a next time step t+1. The predictive affective history is included as part of the environment state for the next time step t+1. A reward R is generated on predicted actions up to the current time step t, by comparing them against corresponding annotated movie scene affective labels.
US10885321B2

A hand detection method, a hand segmentation method, an image detection method and system, a storage medium, and a device are provided. The image detection method includes: determining a first starting point in a connected domain of an image to be detected; determining n farthest extremum points different from the first starting point, wherein an Nth farthest extremum point is a pixel point in the connected domain having a maximum geodesic distance to an Nth starting point, an (N+1)th starting point is the Nth farthest extremum point, and n and N are both positive integers; performing region growing with the n farthest extremum points as initial points respectively, to acquire n regions in the connected domain; judging whether a relationship between a preset feature of each region and a preset feature of the connected domain satisfies a selection condition, to determine an available region satisfying the selection condition.
US10885319B2

Disclosed herein is a posture control system containing a posture control unit that changes a direction of a user's body and a display unit mounted on a user's head. The posture control system includes: a posture data acquiring unit configured to acquire posture data indicating the direction of the user's body; a motion sensor data acquiring unit configured to acquire motion sensor data indicating a direction of a user's face in a real space which is detected by a motion sensor; a camera image data acquiring unit configured to acquire camera image data indicating the face direction with reference to the direction of the user's body which is specified based on a camera image; and a face direction specifying unit configured to specify the direction of the user's face based on the posture data, the motion sensor data, and the camera image data.
US10885307B2

The present invention is a photograph sharing process and/or system that allows professional photographers, who photograph weddings or other events where large numbers of photographs containing varying subject, to send photographs in which a subject or individual appears directly to that particular individual. Thus, the photographs are shared only with intended recipients and may be viewed essentially simultaneously or in close proximity to the photographed event.
US10885288B2

An electronic label system is provided. The electronic label system includes a line replaceable unit. The electronic label system also includes an electronic label communicatively coupled to the line replaceable unit via a hardware link. The electronic label stores information respective to the line replaceable unit. The electronic label includes a chip or a radio frequency identification tag that provides the information to a reader.
US10885287B2

An article management system includes multiple reader devices that read the RFID tags attached to the articles. Moreover, a central terminal partitions an article management area into multiple middle areas that are in turn partitioned into small areas, and then causes reader devices arranged in two or more small areas to work in a predetermined order for each small area, to read information of the RFID tags. The range of radio wave interference distance assumed for a reader device in a first middle area partially overlaps with a second middle area. Thus, when causing the reader devices arranged in the first middle area to work in order, the central terminal controls a reader device in the second middle area that lies outside the range of radio wave interference distance from a reader device working in the first middle area.
US10885264B2

Methods, systems, and media for creating a layout of digital assets are provided. In some embodiments, the method comprises: presenting a layout of digital assets, wherein the layout of digital assets includes a plurality of elements; receiving a selection of a digital asset from a group of available digital assets to be included in the layout of digital assets; in response to receiving the selection of the digital asset, causing a representation of the digital asset to be presented in the layout of digital assets; causing an image that represents the layout of digital assets to be created, wherein the image is associated with a Uniform Resource Locator (URL); and in response to determining that the URL has been selected, causing the image to be presented.
US10885252B1

Aspects of the present disclosure address systems and methods for functional coverage in integrated circuit (IC) designs utilizing arbitrary expression to define irrelevant domains in coverage item definitions. A coverage item definition is determined to include an arbitrary expression that defines an irrelevant domain for a coverage item in a functional coverage analysis of an IC design. Based on determining if the item definition comprises the arbitrary expression, a verification the arbitrary expression satisfies one or more analyzability conditions is performed. Based on verifying the arbitrary expression satisfies the one or more analyzability conditions, the irrelevant domain for the coverage item is calculated based on the arbitrary expression. An enhanced functional coverage model that excludes the irrelevant domain for the coverage item is generated and used to perform the functional coverage analysis on the IC design.
US10885247B2

A method for implementing a distributed hardware system includes retrieving a hardware design described in a hardware description language, where the hardware design includes a plurality of components. The method further includes, for each component of the hardware design, sending the component to a hardware compiler and to one of a plurality of software engines, where the hardware compiler compiles the component to run in one of a plurality of hardware engines and the one software engine simulates the component while the hardware compiler compiles the component for the one hardware engine, and upon completion of the compilation of the component, sending the compiled component to one of the hardware engines to be executed by the one hardware engine and monitoring communication so that the one hardware engine can interact with other components in other hardware engines or software engines.
US10885235B2

A method and apparatus for developing a product. A product development environment comprises a system. The system further comprises a virtual product online world manager and a transformer. The virtual product online world manager is configured to manage elements for a product under development in a virtual product online world. The transformer is configured to exchange the elements with a number of product development systems developing the elements over a network.
US10885233B2

Systems and methods generating textiles with repeating design elements based at least in part on Voronoi diagrams are provided. In one example implementation, the method can include generating a plurality of seed points in a graphic area. The seed points are utilized to create a Voronoi diagram. A Voronoi diagram is thereafter propagated within the graphic area based upon the seed points. The method also includes receiving a first user input defining a design area. The design area includes a plurality of boundaries within the graphic area. The design area is then correlated to a textile segment and a textile design is generated by replicating the cells in the design area. The cells that intersect the boundaries of the design area are replicated with identical instances placed at the adjacent sides of the design area and the corners of the design area.
US10885230B1

The present invention provides an external terminal protection device and a corresponding protection system, the external terminal protection device including: an interface control module, used for providing an internal interface and an external interface, the internal interface being connected to a corresponding interface of a protected host, and the external interface being configured to access one or more external devices; and a system control module, used for connecting the interface control module, and controlling security authentication of the external devices accessed to the one or more external interfaces on the interface control module, so as to determine whether the external devices are licensed access devices. The present invention can protect the security of the protected host without installing security protection software on the protected host, thereby greatly reducing system security risks, and comprehensively eliminating the potential security hazards that may be generated by the interfaces.
US10885221B2

A system, method and program product for obfuscating audible messages in a listening space A system is provided that includes an orchestrator having: an invocation detection system that triggers an obfuscation event; a system for selecting injector nodes in the listening space for the obfuscation event; and a key management system that distributes keys, derived from a natural interface key, to the injector nodes to cause the injector nodes to inject sounds into the listening space to obfuscate an audible message broadcast by a source node for a target node; and a machine learning system that calculates the natural interface key based on interactions captured from the source node in the listening space.
US10885208B2

A content management system for collecting files from one or more submitters in a collection folder. A collector, who generates the collection folder, can invite one or more submitters to submit one or more files to the collection folder. The submitted files are scanned for malicious content. The one or more submitters have limited rights to the collection folder. The limited rights can include uploading rights and prohibiting a submitter from viewing files that other submitters associated with the collection folder submitted. Thus, the collection folder is able to store files from the one or more submitters, but prevent them from viewing other's submissions.
US10885197B2

Method, apparatus, and computer program product are provided for merging multiple compute nodes with trusted platform modules (TPMs) utilizing an authentication protocol with active TPM provisioning. In some embodiments, compute nodes are connected to be available for merger into a single multi-node system. Each compute node includes a TPM accessible to firmware on the node. One compute node is assigned the role of master compute node (MCN), with the other node(s) each assigned the role of slave compute node (SCN). Active TPM provisioning in each SCN produces key information that is sent to the MCN to enable use of a challenge/response exchange with each SCN. A quote request is sent from the MCN to each SCN. In response to receiving the quote request, a quote response is sent from each respective SCN to the MCN, wherein the quote response includes slave TPM content along with TPM logs and associated signatures.
US10885187B1

A storage system includes at least one processing device comprising a processor coupled to a memory, the at least one processing device being configured to determine two or more storage servers accessible to the storage system and to conduct a virus scan by iterating through the two or more storage servers to scan files stored in a plurality of file systems of the two or more storage servers. Iterating through the two or more storage servers comprises selecting one of the storage servers, identifying the file systems provided by the selected storage server, committing the identified file systems to a plurality of antivirus servers coupled to the storage array, scanning files in the committed file systems utilizing the plurality of antivirus servers, and, responsive to completing the scan of files in the committed file systems, selecting another one of the storage servers and repeating the identifying, committing and scanning.
US10885185B2

A computer-implemented method for implementing alert interpretation in enterprise security systems is presented. The computer-implemented method includes employing a plurality of sensors to monitor streaming data from a plurality of computing devices, generating alerts based on the monitored streaming data, automatically analyzing the alerts, in real-time, by using a graph-based alert interpretation engine employing process-star graph models, retrieving a cause of the alerts, an aftermath of the alerts, and baselines for the alert interpretation, and integrating the cause of the alerts, the aftermath of the alerts, and the baselines to output an alert interpretation graph to a user interface of a user device.
US10885176B2

Example techniques are described for image-based user authentication. An example method includes receiving, by a host system, a passphrase comprising a plurality of words, the passphrase being provided for authentication of a user. The method further includes generating, by the host system, an image selection grid comprising a plurality of images, each word from the passphrase corresponding to one or more images from the image selection grid. The method further includes receiving, by the host system, a plurality of selected images from the image selection grid. The method further includes storing, by the host system, the selected images as a login challenge for the user.
US10885175B2

Systems, methods, and non-transitory computer-readable media can determine user input that was provided to authenticate a user, the user input including a plurality of characters. A first input delay pattern corresponding to the user input is determined. A determination is made that the first input delay pattern satisfies an input delay pattern corresponding to a password for a user account. The user is then authenticated.
US10885174B2

A method for providing an IoT functionality to a device, the method comprising manufacturing the device by: providing a connectivity module with a register comprising data related to machine-to-machine (M2M) credentials and comprising: a unique client identifier (Client ID), an authentication identifier (Authentication ID) related to a unique pair of public/private encryption keys, a wireless client access point identifier (miniAP SSID) and a wireless encryption key (miniAP WPA, WPA2); providing a non-electronic label associated with the connectivity module and comprising the wireless client access point Identifier (miniAP SSID) and the wireless encryption key (miniAP WPA, WPA2); providing an electronic module having a device serial number (Device ID S/N); providing a non-electronic label associated with the electronic module and comprising an activation code unique for the device; assembling the device by connecting the electronic module with the connectivity module; and providing a package comprising the device and the non-electronic labels.
US10885173B2

Authentication tokens, systems, and methods are described. An illustrative method is disclosed to include receiving an electronic file including a digital image, receiving biometric information that is associated with a person, modifying the electronic file with the biometric information such that one or more pixels in the digital image are replaced with the biometric information, and storing the modified electronic file as a digital authentication token to be used in connection with authorized publications of original digital work.
US10885172B2

The present disclosure describes a computer-implemented platform for managing electronic endorsable instruments and electronic endorser verification information in order to validate endorser identity. A computer system receives an endorsable electronic instrument and a mobile phone number associated with a targeted potential endorser. The endorsable electronic instrument and a verification information request are sent to the mobile phone number by sending a link to an endorsement application via a message to the mobile phone number. The endorsed electronic instrument and corresponding verification information are received and are associated to validate the endorsed instrument.
US10885170B1

A system receives, from a patient, first biometric data associated with a first biometric data type and second biometric data associated with a second biometric data type and generates a cryptographic hash of the first biometric data and the second biometric data. The system records the biometric numeric score on a blockchain network. The system receives protected health information for the patient and generates a protected health information numeric score based on the protected health information for the patient. The system records the protected health information numeric score on the blockchain network, receives encrypted patient credentials, records the encrypted patient credentials on the blockchain network and generates a master cryptographic hash based at least in part on the recorded biometric numeric score. The system validates, via a validation module including a smart contract operating on the blockchain network, the patient credentials.
US10885166B2

A computer security protection may be provided by dynamic computer system certification. User usage of a computer system may be monitored. Based on the monitoring a role of the user in the usage of the computer system is determined. A certification required for the role and whether the user has the certification sufficient for the role are determined. Responsive to determining that the user does not have the certification sufficient for the role, a certification process is initiated.
US10885163B2

The present disclosure provides a computer-implemented method, computer system and computer program product for user authentication. According to the method, identity information can be received from a user, and a plurality of questions can be presented to the user, the plurality of questions comprising one or more valid questions generated based on a password related to the identity information and one or more invalid questions. Then, an input can be received from the user, and in response to the input corresponding to the one or more valid questions, the user can be authenticated based on the input.
US10885159B2

A software and/or hardware facility that can be used by content owners to assert ownership of content so that copyright friendly websites and services can take action against copyright piracy effectively, efficiently and is scalable is disclosed. The facility makes available to all content owners watermarking/fingerprinting technology so an identifier (e.g., a unique code) can be embedded in the content (e.g., video/audio portion of each video content asset). The facility utilizes blockchain technology to add information related to each unique identifier in a database and allows an authorized user (e.g., the owner) to update the information through a blockchain transaction.
US10885157B2

A method, a computer program product, and a data processing system for determining a database signature of a database includes determining a set of characteristics of the database; identifying at least one unique characteristic of the database that is unique among characteristics of other databases, which characteristics of other databases are stored in a signature data store; generating the database signature from the at least one unique characteristic; and storing the database signature and the unique characteristic in the signature data store.
US10885149B2

A volumetric segmentation method is disclosed for brain region analysis, in particular but not limited to, regions of the basal ganglia such as the subthalamic nucleus (STN). This serves for visualization and localization within the sub-cortical region of the basal ganglia, as an example of prediction of a region of interest for deep brain stimulation procedures. A statistical shape model is applied for variation modes of the STN, or the corresponding regions of interest, and its predictors on high-quality training sets obtained from high-field, e.g., 7T, MR imaging. The partial least squares regression (PLSR) method is applied to induce the spatial relationship between the region to be predicted, e.g., STN, and its predictors. The prediction accuracy for validating the invention is evaluated by measuring the shape similarity and the errors in position, size, and orientation between manually segmented STN and its predicted one.
US10885148B2

A medical classification code modeling system and method that generates visual maps in response to user queries, where the visual maps represent combinations of modifiers of an interface terminology that, taken together, map to medical classification code elements. The system and method may present multiple visual maps on the same display to permit visual analysis of multiple mapping revisions or versions. The system and method further may integrate into an electronic health record such that the user's ultimate selection of a mapping results in the corresponding medical classification code being inserted into the record of a patient at an appropriate location, such as on the patient's problem list.
US10885146B2

Data analysis for structural health monitoring relating to a method of modal identification for structures with non-proportional damping based on extended sparse component analysis. Hilbert transform constructs analytical signal of acceleration response. Analytical signal is transformed into time-frequency domain using short-time-Fourier transform. The criterion is taken as the correlation coefficient of adjacent frequency points is close to 1. Points contributed by only one mode are detected from the time-frequency plane. Phases calculated at single-source-points are used to remove local outliers through local outlier factor method. Amplitudes of complex-valued mode shapes are estimated by Hierarchical clustering of amplitudes for time-frequency coefficients at single-source-points. Averaged phases of grouped single-source-points are estimated phases of complex-valued mode shapes. Finally, complex-valued mode shapes are acquired. Modal responses are estimated by sparse reconstruction method. This method extends application range of sparse component analysis method, and can identify complex modes of non-proportionally damped structures.
US10885141B2

A system and method for outputting weather data associated with a user-specified location based on a user-specified weather inquiry, including weather data output based on user-specified weather conditions, locations output based on a user-specified weather inquiry, notifications output regarding weather-related warnings, and notifications output based on weather-related notification thresholds.
US10885132B2

A method, system and a computer program product are provided for obscuring web searches by generating or retrieving one or more simulated user search behavior profiles for one or more simulated users, and then generating one or more obfuscating search inquiries consistent with the one or more simulated user search behavior profiles for issuance with the user search inquiries to impair the search engine from accurately characterizing search information related to the first user.
US10885121B2

Methods and systems for searching for similar documents include comparing an input index of a requested document to one or more stored indices for respective stored documents to produce a similarity score for each of the stored documents. Each index indicates which of a plurality of queries matched a respective document. The stored documents are filtered to remove dissimilar documents based on a comparison of each respective similarity score to a threshold. A list of any stored documents that remain after said filtering is output.
US10885115B2

Computer-implemented methods for accessing a particular element of a plurality of elements stored in an N-way linked list in a computer memory provide for adding or removing elements at locations within the list. The methods may be employed with LIFO or FIFO N-way linked lists. The methods may include traversing the N sub-lists in parallel as well as the use of single instruction multiple data operations.