Solar cell, manufacturing method thereof, and photovoltaic module

    公开(公告)号:US11804564B2

    公开(公告)日:2023-10-31

    申请号:US17737908

    申请日:2022-05-05

    摘要: Provided is a solar cell, including: an N-type semiconductor substrate having a front surface and a rear surface opposite to the front surface; a boron diffusion layer arranged on the front surface of the N-type semiconductor substrate, a first passivation layer is provided on a surface of the boron diffusion layer, and a first electrode is provided passing through the first passivation layer to form an electrical connection with the N-type semiconductor substrate; and a phosphorus-doped polysilicon layer arranged on the rear surface of the N-type semiconductor substrate. A silicon oxide layer containing nitrogen and phosphorus is provided between the rear surface of the N-type semiconductor substrate and the phosphorus-doped polysilicon layer, a second passivation layer is provided on a surface of the phosphorus-doped polysilicon layer, and a second electrode is provided passing through the second passivation layer to form an electrical connection with the phosphorus-doped polysilicon layer.

    Semiconductor device
    5.
    发明授权

    公开(公告)号:US11791386B2

    公开(公告)日:2023-10-17

    申请号:US17895054

    申请日:2022-08-24

    摘要: A semiconductor device includes a semiconductor substrate, a gate structure, a source region, a drain region, and a plurality of field plates. The gate structure is disposed on the semiconductor substrate. The source region and the drain region are disposed in the semiconductor substrate and located at two opposite sides of the gate structure in a first direction respectively. The field plates are disposed on the semiconductor substrate. Each of the field plates is partly located above the gate structure and partly located between the gate structure and the drain region. The gate structure is electrically connected with at least one of the field plates, and the source region is electrically connected with at least one of the field plates.

    Deep trench integration processes and devices

    公开(公告)号:US11410873B2

    公开(公告)日:2022-08-09

    申请号:US16953567

    申请日:2020-11-20

    摘要: Exemplary methods of forming a semiconductor device may include etching a trench from a first surface of a semiconductor substrate to a first depth within the semiconductor substrate. The trench may be characterized by a first width through the first depth. The methods may include forming a liner along sidewalls of the trench. The methods may include etching the trench to a second depth at least ten times greater than the first depth. The trench may be characterized by a second width through the second depth. The methods may include filling the trench with a dielectric material. A seam formed in the dielectric material may be maintained below the first depth.

    Semiconductor device and manufacturing method thereof

    公开(公告)号:US11380779B2

    公开(公告)日:2022-07-05

    申请号:US17060049

    申请日:2020-09-30

    摘要: A semiconductor device includes a gate structure, a double diffused region, a source region, a drain region, a first gate spacer, and a second gate spacer. The gate structure is over a semiconductor substrate. The double diffused region is in the semiconductor substrate and laterally extends past a first side of gate structure. The source region is in the semiconductor substrate and is adjacent a second side of the gate structure opposite the first side. The drain region is in the double diffused region in the semiconductor substrate and is of a same conductivity type as the double diffused region. The first gate spacer is on the first side of the gate structure. The second gate spacer extends upwardly from the double diffused region along an outermost sidewall of the first gate spacer and terminates prior to reaching a top surface of the gate structure.

    Method of manufacturing inverter and inverter

    公开(公告)号:US11328961B2

    公开(公告)日:2022-05-10

    申请号:US16626352

    申请日:2019-11-21

    发明人: Huafei Xie

    摘要: A method of manufacturing an inverter and an inverter are provided. The method of manufacturing the inverter includes following steps: forming a substrate and forming a first insulating layer on the substrate; forming a semiconductor-type carbon nanotube film on the first insulating layer; patterning the semiconductor-type carbon nanotube film to form a first active layer and a second active layer arranged at an interval; forming a first barrier layer on the first active layer and forming a second barrier layer on the second active layer, wherein the first barrier layer is an electrophilic film layer, and the second barrier layer is an electron donor film layer; and forming a first source and a first drain which are in contact with and spaced apart from two ends of the first active layer and forming a second source and a second drain which are in contact with and spaced with two ends of the second active layer, wherein the first drain is connected to the second source. By using the semiconductor-type carbon nanotube as the active layer to cooperate with the electrophilic film layer and the electron donor film layer as a barrier layer, manufacturing process of the inverter can be simplified, and manufacturing cost of the inverter can be reduced.