Abstract:
A semiconductor device includes a channel component of a transistor and a gate component disposed over the channel component. The gate component includes: a dielectric layer, a first work function metal layer disposed over the dielectric layer, a fill-metal layer disposed over the first work function metal layer, and a second work function metal layer disposed over the fill-metal layer.
Abstract:
A method includes forming a dummy gate stack over a fin protruding from a semiconductor substrate, forming gate spacers on sidewalls of the dummy gate stack, forming source/features over portions of the fin, forming a gate trench between the gate spacers, which includes trimming top portions of the gate spacers to form a funnel-like opening in the gate trench, and forming a metal gate structure in the gate trench. A semiconductor structure includes a fin protruding from a substrate, a metal gate structure disposed over the fin, gate spacers disposed on sidewalls of the metal gate structure, where a top surface of each gate spacer is angled toward the semiconductor fin, a dielectric layer disposed over the top surface of each gate spacer, and a conductive feature disposed between the gate spacers to contact the metal gate structure, where sidewalls of the conductive feature contact the dielectric layer.
Abstract:
Semiconductor device structures with reduced gate end width formed at gate structures and methods for manufacturing the same are provided. In one example, a semiconductor device structure includes a plurality of gate structures formed over a plurality of fin structures, the gate structures formed substantially orthogonal to the fin structures, wherein the plurality of gate structures includes a first gate structure having a first gate end width and a second gate structure having a second gate end width, wherein the second gate end width is shorter than the first gate end width.
Abstract:
A semiconductor device includes a channel component of a transistor and a gate component disposed over the channel component. The gate component includes: a dielectric layer, a first work function metal layer disposed over the dielectric layer, a fill-metal layer disposed over the first work function metal layer, and a second work function metal layer disposed over the fill-metal layer.
Abstract:
Analog and logic devices may coexist on a common integrated circuit chip, accommodating features with different pitches, linewidths, and pattern densities. Such differences in design and layout at various layers during manufacturing can cause process loading by contributing different amounts of reactants to surface chemical reactions. Such variation in the balance of chemical reactants can result in disparities in film thicknesses within the chip that can affect device performance. Embodiments of the present disclosure disclose a masking sequence that can alleviate process loading disparities during an undercut etch process adjacent to polysilicon structures.
Abstract:
A semiconductor device includes a channel component of a transistor and a gate component disposed over the channel component. The gate component includes: a dielectric layer, a first work function metal layer disposed over the dielectric layer, a fill-metal layer disposed over the first work function metal layer, and a second work function metal layer disposed over the fill-metal layer.
Abstract:
Some embodiments relate to an integrated circuit (IC) including one or more finFET devices. A finFET includes a fin of semiconductor material extending upwards from a semiconductor substrate. First and second source/drain regions, which have a first doping type, are spaced apart laterally from one another in the fin. A channel region is disposed in the fin and physically separates the first and second source/drain regions from one another. The channel region has a second doping type opposite the first doping type. A conductive gate electrode straddles the fin about the channel region and is separated from the channel region by a gate dielectric. A shallow doped region, which has the first doping type, is disposed near a surface of the fin around upper and sidewall fin regions. The shallow doped region extends continuously under the gate electrode between outer edges of the gate electrode.
Abstract:
A method includes forming a dummy gate stack over a fin protruding from a semiconductor substrate, forming gate spacers on sidewalls of the dummy gate stack, forming source/features over portions of the fin, forming a gate trench between the gate spacers, which includes trimming top portions of the gate spacers to form a funnel-like opening in the gate trench, and forming a metal gate structure in the gate trench. A semiconductor structure includes a fin protruding from a substrate, a metal gate structure disposed over the fin, gate spacers disposed on sidewalls of the metal gate structure, where a top surface of each gate spacer is angled toward the semiconductor fin, a dielectric layer disposed over the top surface of each gate spacer, and a conductive feature disposed between the gate spacers to contact the metal gate structure, where sidewalls of the conductive feature contact the dielectric layer.
Abstract:
A semiconductor device includes a channel component of a transistor and a gate component disposed over the channel component. The gate component includes: a dielectric layer, a first work function metal layer disposed over the dielectric layer, a fill-metal layer disposed over the first work function metal layer, and a second work function metal layer disposed over the fill-metal layer.
Abstract:
A method includes forming a dummy gate stack over a fin protruding from a semiconductor substrate, forming gate spacers on sidewalls of the dummy gate stack, forming source/features over portions of the fin, forming a gate trench between the gate spacers, which includes trimming top portions of the gate spacers to form a funnel-like opening in the gate trench, and forming a metal gate structure in the gate trench. A semiconductor structure includes a fin protruding from a substrate, a metal gate structure disposed over the fin, gate spacers disposed on sidewalls of the metal gate structure, where a top surface of each gate spacer is angled toward the semiconductor fin, a dielectric layer disposed over the top surface of each gate spacer, and a conductive feature disposed between the gate spacers to contact the metal gate structure, where sidewalls of the conductive feature contact the dielectric layer.