Abstract:
Methods of preparing nitric oxide-releasing silica particles are provided, including the steps of functionalizing a silica particle with a linker moiety; and reacting a functional group on a nitric oxide storage/release compound with the linker moiety to attach the nitric oxide storage/release compound to the silica particle via the linker moiety. The disclosure also provides certain nitric oxide-releasing silica particles and precursors thereof, as well as compositions containing such particles.
Abstract:
The present invention relates to a polymer composition, which contains or consists of a matrix of at least one thermoplastic polymer capable of crystallization and, incorporated therein, at least one azine dye and at least one ion liquid. Said polymer composition is characterized in that the crystallization point relative to non-additivated polymer compositions is substantially reduced. The invention further relates to a corresponding additive composition for the crystallization and/or for the lowering of the crystallization point of thermoplastic polymers or polymer compositions capable of crystallization.
Abstract:
Disclosed are methods for combining a thermoplastic polymer with a carbon nanomaterial. More particularly, A method of preparing a thermoplastic polymer combined with a carbon nanomaterial includes combining the carbon nanomaterial with a pyrene derivative by stirring 1 to 40 wt % of a carbon nanomaterial, 1 to 40 wt % of a polycyclic aromatic hydrocarbon derivative, and 20 to 98 wt % of a solvent with a mechanical mixer. According to the present invention, the resulting materials exhibit excellent tensile strength, tensile modulus, electromagnetic shielding effects and anti-static effects, and the like.
Abstract:
Disclosed are a thermoplastic polymer combined with a carbon nanomaterial and a method of preparing the same. More particularly, a thermoplastic polymer combined with carbon nanomaterial, comprising 0.1 to 15 wt % of a carbon nanomaterial, 0.025 to 30 wt % of a polycyclic aromatic hydrocarbon derivative, and 55 to 99.875 wt % of a thermoplastic polymer, wherein the carbon nanomaterial and the polycyclic aromatic hydrocarbon derivative combine through π-π interaction, and the polycyclic aromatic hydrocarbon derivative covalently combines with the thermoplastic polymer, is disclosed. The thermoplastic polymer combined with the carbon nanomaterial and the method of preparing the same, according to the present invention, exhibit excellent tensile strength, tensile modulus, electromagnetic shielding effects and anti-static effects, and the like.
Abstract:
An object of the present invention is to provide an azo compound capable of improving the dispersibility of an azo pigment in a non-water-soluble solvent. The object of the present invention is achieved with an azo compound wherein a coloring matter moiety having a diketone azo structure and a polymer are bonded to each other.
Abstract:
A colloidal pigment dispersion composition comprising: water; dispersed pigment particles; a first polymer dispersant comprising units derived from an acrylate or methacrylate monomer having an alkyl group with 12 or more carbons and units derived from an ethylenicaly unsaturated monomer comprising a carboxylic acid substituent; and a second polymer dispersant comprising units derived from a monomer comprising an aromatic group containing substituent and units derived from an ethylenicaly unsaturated monomer comprising a carboxylic acid substituent, wherein the second polymer dispersant does not comprise units derived from an acrylate or methacrylate monomer having an alkyl group of 12 or more carbons, and wherein the second polymer dispersant has an acid number less than 270.
Abstract:
In the invention, use is made of at least one metal organosilicate polymer, in the form of particles, having one of the following formulae I and II: R4Si4Al2O8(OH)x, Formula I: R8Si8M6O16(OH)y, Formula II: for the protection from oxidation and/or electromagnetic radiation of a compound sensitive to oxidation and/or to electromagnetic radiation. The invention finds application in particular in the field of the protection from oxidation and photoaging of various materials.
Abstract:
A polymeric composition capable of releasing nitric oxide including a polymer and a nitric oxide-releasing N.sub.2 O.sub.2.sup.- functional group bound to the polymer; pharmaceutical compositions including the polymeric composition; and methods for treating biological disorders in which dosage with nitric oxide is beneficial. The compositions can be used as and/or incorporated into implants, injectables, condoms, prosthesis coatings, patches, and the like for use in a wide variety of medical applications.
Abstract:
Compositions are provided for compatibilized blends comprising compatibilizing poly(phenylene ether) resins and epoxy-functional polyolefins that exhibit improved resistance to delamination while providing high impact strength and other improved physical properties. Articles made from the compositions are useful for automotive lighting and under hood components.
Abstract:
Curable compositions comprising a substance that produces a base when exposed to radiation and a polymer molecule that contains silicon-hydrogen bonds which react with hydroxyl groups under the action of the base to form silicon-oxygen bonds (Si--O) and hydrogen molecules. These compositions cure when exposed to radiation. A pattern can be formed by placing a mask between a coating of the composition and the radiation source during this exposure episode and thereafter dissolving the uncured composition. The compositions have little weight loss during their cure, they can be cured by low intensity radiation, and they yield heat-resistant cured products.