摘要:
The disclosure relates to an electron-optical module of an electron-optical apparatus. The electron-optical module comprises a vacuum chamber, a high voltage shielding arrangement located within the vacuum chamber, and an aperture array configured to form a plurality of beamlets from an electron beam and located within the high voltage shielding arrangement. Wherein the electron-optical module can be configured to be removable from the electron-optical apparatus.
摘要:
An ion implanter encloses a semiconductor substrate adjacent to a fixing member which retains a semiconductor substrate on a supporting bed. The ion implanter includes a ring electrode for generating secondary electrons in response to incident ions and a cup-like electrode for directing the secondary ions to the semiconductor substrate. The ring electrode is negatively biased with respect to the supporting bed and the cup-like electrode surrounds the outer edge of the semiconductor substrate. The ion implanter increases the quantity of the secondary electrons produced and efficiently directs them to the semiconductor substrate. The semiconductor substrate which is electrically charged by implanting ions is neutralized, preventing dielectric breakdown from occurring in an insulating film.
摘要:
Disclosed is a micro-electron column having nanostructure tips. The micro-electro column includes an electron emission source that is provided with a plurality of nanostructure tips and emits electrons, a source lens, a deflector, and a focusing lens. The nanostructure tips of the electron emission source spread over an area that is larger than that of an aperture of a first lens electrode of a source lens, which is nearest to the electron emission source.
摘要:
An objective lens arrangement includes a first, second and third pole pieces, each being substantially rotationally symmetric. The first, second and third pole pieces are disposed on a same side of an object plane. An end of the first pole piece is separated from an end of the second pole piece to form a first gap, and an end of the third pole piece is separated from an end of the second pole piece to form a second gap. A first excitation coil generates a focusing magnetic field in the first gap, and a second excitation coil generates a compensating magnetic field in the second gap. First and second power supplies supply current to the first and second excitation coils, respectively. A magnetic flux generated in the second pole piece is oriented in a same direction as a magnetic flux generated in the second pole piece.
摘要:
The invention relates to an electrode stack (70) comprising stacked electrodes (71-80) for manipulating a charged particle beam along an optical axis (A). Each electrode comprises an electrode body with an aperture for the charged particle beam. The electrode bodies are mutually spaced and the electrode apertures are coaxially aligned along the optical axis. The electrode stack comprises electrically insulating spacing structures (89) between each pair of adjacent electrodes for positioning the electrodes (71-80) at predetermined mutual distances along the axial direction (Z). A first electrode and a second electrode each comprise an electrode body with one or more support portions (86), wherein each support portion is configured to accommodate at least one spacing structure (89). The electrode stack has at least one clamping member (91-91c) configured to hold the support portions (86) of the first and second electrodes, as well as the intermediate spacing structure (89) together.
摘要:
The invention relates to charged particle beam generator comprising a charged particle source for generating a charged particle beam, a collimator system comprising a collimator structure with a plurality of collimator electrodes for collimating the charged particle beam, a beam source vacuum chamber comprising the charged particle source, and a generator vacuum chamber comprising the collimator structure and the beam source vacuum chamber within a vacuum, wherein the collimator system is positioned outside the beam source vacuum chamber. Each of the beam source vacuum chamber and the generator vacuum chamber may be provided with a vacuum pump.
摘要:
An electrostatic lens for transporting charged particles in an axial direction includes a first group of first electrodes configured to receive a first DC potential from a DC voltage source, and a second group of second electrodes configured to receive a second DC potential from the DC voltage source different from the first DC potential. The first electrodes are interdigitated with the second electrodes. The first group and/or the second group has a geometric feature that progressively varies along the axial direction. The lens generates an axial potential profile that progressively changes along the axial direction, and thereby reduces geometrical aberrations. The lens may be part of a charged particle processing apparatus such as, for example, a mass spectrometer or an electron microscope.
摘要:
The invention relates to a collimator electrode stack (70), comprising: —at least three collimator electrodes (71-80) for collimating a charged particle beam along an optical axis (A), wherein each collimator electrode comprises an electrode body with an electrode aperture for allowing passage to the charged particle beam, wherein the electrode bodies are spaced along an axial direction (Z) which is substantially parallel with the optical axis, and wherein the electrode apertures are coaxially aligned along the optical axis; and —a plurality of spacing structures (89) provided between each pair of adjacent collimator electrodes and made of an electrically insulating material, for positioning the collimator electrodes at predetermined distances along the axial direction. Each of the collimator electrodes (71-80) is electrically connected to a separate voltage output (151-160).The invention further relates to a method of operating a charged particle beam generator.
摘要:
An electron microscope is provided which is reduced in total weight and shape. An electron gun cathode and an electron gun lens are enclosed in an electron gun chamber. An electron beam emitted from the electron gun chamber is converged by an objective lens to irradiate a wafer. Each of the electron gun lens and the objective lens is formed as an electrostatic field lens.
摘要:
A charged particle generating device such as an ion implanter, a secondary ion mass spectrometer having a good mounting operability, a simple construction, good characteristics such as sensitivity, etc., owing to the fact that there is disposed a focusing electrode composed of the cylindrical electrodes disposed coaxially with each other, at least the inner electrode thereof having a plurality of openings.