Abstract:
Provided in some aspects are methods for light-controlled in situ surface patterning of a substrate comprising a step of blocking or ablating oligonucleotide molecules in a boundary region separating a plurality of spot regions, and attaching oligonucleotides to oligonucleotide molecules in a first one or more of the spot regions.
Abstract:
Various implementations provide an inherently safer design feature for microchannel reactors that provides temperature control at the individual channel level. This approach relies on bimetallic strips embedded within the combustion channel, forming a thermally-actuated “valve”. Bimetallic strips convert a temperature change into a mechanical displacement. Heating the strip increases its deflection and thereby restricts flow in the combustion channels, which consequently reduces the rate of heat generation. The thermally-actuated valve is not limited to use in microchannel reactors and may be used in other structures for which thermally actuated flow control is desired, according to some implementations.
Abstract:
The present invention relates to an apparatus for producing trichlorosilane from tetrachlorosilane in an efficient manner. The apparatus includes an inlet through which reaction raw materials including a metal silicon powder dispersed in liquid tetrachlorosilane enter, a hole through which a gaseous reaction raw material is fed, an outlet through which reaction products including trichlorosilane exit, a tubular reactor in which the reaction raw materials entering through the inlet react with each other during flow, and means for impeding the flow of the fluids to cause collision of the fluids during flow.
Abstract:
Novel designs for microchannel apparatus are described in which microchannels are shaped to reduce the amount of material needed to build an apparatus. In these designs, some microchannels are shaped, in cross-section, to provide relatively more structural material in areas of greatest stress, while leaving greater area for unit operations in areas of the apparatus that are subjected to relatively less stress.
Abstract:
The present disclosure is directed towards improved systems and methods for large-scale production of nanoparticles used for delivery of therapeutic material. The apparatus can be used to manufacture a wide array of nanoparticles containing therapeutic material including, but not limited to, lipid nanoparticles and polymer nanoparticles. In certain embodiments, continuous flow operation and parallelization of microfluidic mixers contribute to increased nanoparticle production volume.
Abstract:
Systems and methods for confining droplets within a microfluidic channel as well as systems and methods for packing droplets are provided. More specifically, a system and method are provided for controlling the introduction and removal of oil into a microfluidic channel in order to control where drops are allowed to flow within that channel.
Abstract:
Disclosed is a process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms, the process comprising: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. Also disclosed is a supported catalyst comprising Co, and a microchannel reactor comprising at least one process microchannel and at least one adjacent heat exchange zone.
Abstract:
A microfluidic element comprising at least one pair of plates, at least one of said plates having an open channel distributed on a surface that is adjacent the other plate in the pair. In use, said plates are releasably clamped together so as to form an enclosed, continuous microfluidic channel between the plates that is suitable for the passage of a fluid.
Abstract:
The disclosed invention relates to a process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms, the process comprising: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. The disclosed invention also relates to a supported catalyst comprising Co, and a microchannel reactor comprising at least one process microchannel and at least one adjacent heat exchange zone.
Abstract:
The present disclosure provides an apparatus for synthesizing a biopolymer, a method for preparing an apparatus for synthesizing a biopolymer, and a method of synthesizing a biopolymer. The apparatus comprises (a) a substrate comprising atop surface and a plurality of wells, wherein each of the plurality of wells comprises a first electrode disposed on the bottom of the well and a linker attached to the sides of the well; and (b) a fluidic chamber system disposed on the top surface of the substrate.