Abstract:
A cement-directing structure for use in cement-injection bone therapy includes a collapsible, self-restoring braided structure with regions of differential permeability to the bone cement. The regions of differential permeability may be provided by areas where the braided mesh density is greater or lesser than surrounding areas and/or by means of a baffle. After the structure is placed in a void within a bony structure, cement is injected into the interior of the structure then oozes out in preferred directions according to the locations of the regions of differential permeability.
Abstract:
The present invention disclosed a method of producing a three-dimensional porous tissue in-growth structure. The method includes the steps of depositing a first layer of metal powder and scanning the first layer of metal powder with a laser beam to form a portion of a plurality of predetermined unit cells. Depositing at least one additional layer of metal powder onto a previous layer and repeating the step of scanning a laser beam for at least one of the additional layers in order to continuing forming the predetermined unit cells. The method further includes continuing the depositing and scanning steps to form a medical implant.
Abstract:
The present invention disclosed a method of producing a three-dimensional porous tissue in-growth structure. The method includes the steps of depositing a first layer of metal powder and scanning the first layer of metal powder with a laser beam to form a portion of a plurality of predetermined unit cells. Depositing at least one additional layer of metal powder onto a previous layer and repeating the step of scanning a laser beam for at least one of the additional layers in order to continuing forming the predetermined unit cells. The method further includes continuing the depositing and scanning steps to form a medical implant.
Abstract:
A method of forming an implant having a porous tissue ingrowth structure and a bearing support structure. The method includes depositing a first layer of a metal powder onto a substrate, scanning a laser beam over the powder so as to sinter the metal powder at predetermined locations, depositing at least one layer of the metal powder onto the first layer and repeating the scanning of the laser beam.
Abstract:
An implantable prosthesis including at least one element defining a bone-engaging surface, the bone-engaging surface including an anchoring mechanism operative for enhancing anchoring and adhesion of the joint defining element to the bone and thus improving the stability and longevity of the prosthesis.
Abstract:
Prosthetic joints, components for prosthetic joints, superhard bearing and articulation surfaces, diamond bearing and articulation surfaces, substrate surface topographical features, materials for making joints, bearing and articulation surfaces, and methods for manufacturing and finishing the same, and related information are disclosed, including a prosthetic joint component having at least one solid polycrystalline diamond component.
Abstract:
A method of forming an implant having a porous tissue ingrowth structure and a bearing support structure. The method includes depositing a first layer of a metal powder onto a substrate, scanning a laser beam over the powder so as to sinter the metal powder at predetermined locations, depositing at least one layer of the metal powder onto the first layer and repeating the scanning of the laser beam.
Abstract:
There is disclosed a bone fixation device that can include a cage having an optional mesh portion. The bone fixation device can be configured to couple a leg portion to a foot portion of a user's body. In at least one embodiment, the device includes at least one cage having a plurality of struts forming cells. There can be an optional mesh portion having a pre-set porosity that can be either constant or variable in density. In at least one embodiment there can be a cage portion which is substantially spherical shaped. Alternatively, the device can be substantially egg shaped. In at least one embodiment there can be a central post hole for receiving a post. In another embodiment at least one plate or shaft can connect to the cage.
Abstract:
A cement-directing structure for use in cement-injection bone therapy includes a collapsible, self-restoring braided structure with regions of differential permeability to the bone cement. The regions of differential permeability may be provided by areas where the braided mesh density is greater or lesser than surrounding areas and/or by means of a baffle. After the structure is placed in a void within a bony structure, cement is injected into the interior of the structure then oozes out in preferred directions according to the locations of the regions of differential permeability.
Abstract:
A cement-directing structure for use in cement-injection bone therapy includes a collapsible, self-restoring braided structure with regions of differential permeability to the bone cement. The regions of differential permeability may be provided by areas where the braided mesh density is greater or lesser than surrounding areas and/or by means of a baffle. After the structure is placed in a void within a bony structure, cement is injected into the interior of the structure then oozes out in preferred directions according to the locations of the regions of differential permeability.