Abstract:
In a method of forming a layer, a substrate is loaded into a chamber and placed at a home position that is a first relative angular position. A process cycle is performed a number of times while the substrate is at the home position. The cycle includes directing source gas onto the substrate at a first location adjacent the periphery of the substrate, purging the chamber, directing reaction gas onto the substrate from the first location, and purging the chamber. The cycle is performed another number of times while the substrate is at another relative angular position, i.e., at a position rotated about its general center relative from the home position.
Abstract:
Methods of manufacturing a semiconductor device include forming a gate insulation layer including a high-k dielectric material on a substrate that is divided into a first region and a second region; forming a diffusion barrier layer including a first metal on a second portion of the gate insulation layer in the second region; forming a diffusion layer on the gate insulation layer and the diffusion barrier layer; and diffusing an element of the diffusion layer into a first portion of the gate insulation layer in the first region.
Abstract:
A method for fabricating a semiconductor device comprises forming a gate insulation layer on a substrate including a first region and a second region, forming a first gate conductive layer and a capping layer on the first region and the second region and heat-treating the substrate, removing the capping layer from the first region and the second region, forming a second gate conductive layer on the first region and the second region, nitriding the second gate conductive layer, and forming a third gate conductive layer on the second region.
Abstract:
A method of fabricating a semiconductor device includes: forming an epitaxial layer on a semiconductor substrate; forming a capping layer having a first thickness on the epitaxial layer; and oxidizing the capping layer in an oxygen atmosphere to form a first gate dielectric layer having a second thickness.
Abstract:
An integrated circuit device may include a gate insulation layer covering a top surface and opposite sidewalls of a fin-shaped active region, a gate electrode covering the gate insulation layer and a hydrogen atomic layer disposed along an interface between the fin-shaped active region and the gate insulation layer. A method of manufacturing the integrated circuit device may include forming an insulating layer covering a lower portion of a preliminary fin-shaped active region, forming a fin-shaped active region having an outer surface with an increased smoothness through annealing an upper portion of the preliminary fin-shaped active region in a hydrogen atmosphere and forming a hydrogen atomic layer covering the outer surface of the fin-shaped active region. A gate insulation layer and a gate electrode may be formed to cover a top surface and opposite sidewalls of the fin-shaped active region.
Abstract:
Methods of forming semiconductor devices are provided. A method of forming a semiconductor device includes forming an insulating layer that includes a trench therein. The method includes forming a high-k layer in the trench. Moreover, the method includes forming a metal layer on the high-k layer, then performing a first heat treatment at a first temperature, and performing a second heat treatment at a second temperature that is higher than the first temperature.
Abstract:
Methods of manufacturing a semiconductor device include forming a gate insulation layer including a high-k dielectric material on a substrate that is divided into a first region and a second region; forming a diffusion barrier layer including a first metal on a second portion of the gate insulation layer in the second region; forming a diffusion layer on the gate insulation layer and the diffusion barrier layer; and diffusing an element of the diffusion layer into a first portion of the gate insulation layer in the first region.
Abstract:
An integrated circuit device may include a gate insulation layer covering a top surface and opposite sidewalls of a fin-shaped active region, a gate electrode covering the gate insulation layer and a hydrogen atomic layer disposed along an interface between the fin-shaped active region and the gate insulation layer. A method of manufacturing the integrated circuit device may include forming an insulating layer covering a lower portion of a preliminary fin-shaped active region, forming a fin-shaped active region having an outer surface with an increased smoothness through annealing an upper portion of the preliminary fin-shaped active region in a hydrogen atmosphere and forming a hydrogen atomic layer covering the outer surface of the fin-shaped active region. A gate insulation layer and a gate electrode may be formed to cover a top surface and opposite sidewalls of the fin-shaped active region.
Abstract:
A fabricating method of a semiconductor device includes stacking a high-k dielectric film not containing silicon (Si) and an insulating film containing silicon (Si) on a substrate, and diffusing Si contained in the insulating film into the high-k dielectric film by annealing the substrate having the high-k dielectric film and the insulating film stacked thereon.
Abstract:
Methods of forming semiconductor devices are provided. A method of forming a semiconductor device includes forming an insulating layer that includes a trench therein. The method includes forming a high-k layer in the trench. Moreover, the method includes forming a metal layer on the high-k layer, then performing a first heat treatment at a first temperature, and performing a second heat treatment at a second temperature that is higher than the first temperature.