Abstract:
A semiconductor device include; a substrate including a cell array region and a key region, a stack structure on the cell array region including vertically stacked electrodes, a dummy structure on the key region, a vertical channel structure penetrating the stack structure to connect the substrate, a dummy pillar penetrating the first dummy structure, an interlayer dielectric layer on the stack structure and the dummy structure, wherein an upper portion of the interlayer dielectric layer on the dummy structure includes a key pattern that vertically overlaps the dummy pillar, and a capping layer on the key region and covering the key pattern.
Abstract:
A semiconductor device includes an upper-level layer having a cell array region, a cell contact region and a dummy region on a substrate. The upper-level layer includes a semiconductor layer, a cell array structure including first and second stack structures sequentially stacked on the semiconductor layer of the cell array region, the first and second stack structures comprising stacked electrodes, a first staircase structure on the semiconductor layer of the cell contact region, the electrodes extending from the cell array structure into the first staircase structure such that the cell array structure is connected to the first staircase structure, a vertical channel structure penetrating the cell array structure, a dummy structure in the dummy region, the dummy structure at the same level as the second stack structure, the dummy structure including stacked first layers, and cell contact plugs in the cell contact region and connected to the first staircase structure.
Abstract:
A three-dimensional semiconductor memory device including a peripheral circuit structure on a first substrate, the peripheral circuit structure including peripheral circuits, a second substrate on the peripheral circuit structure, an electrode structure on the second substrate, the electrode structure including a plurality of electrodes that are stacked on the second substrate and a penetrating interconnection structure penetrating the electrode structure and the second substrate may be provided. The penetrating interconnection structure may include a lower insulating pattern, a mold pattern structure on the lower insulating pattern, a protection pattern between the lower insulating pattern and the mold pattern structure, and a penetration plug. The penetration plug may penetrate the mold pattern structure and the lower insulating pattern and may be connected to the peripheral circuit structure. The protection pattern may be at a level lower than that of the lowermost one of the electrodes.
Abstract:
A method of manufacturing a semiconductor device according to one or more exemplary embodiments of the present inventive concept includes forming a plurality of dummy gates on a substrate. Each of the dummy gates includes a gate mask disposed on an upper surface of each of the dummy gates. A spacer is disposed on at least two sides of the dummy gates. An insulating interlayer is formed on the gate mask and the spacer. A first polishing including chemical mechanical polishing is performed on portions of the gate mask and the insulating interlayer by using a slurry composite having a first mixing ratio. A second polishing including chemical mechanical polishing is formed on remaining portions of the gate mask and the insulating interlayer to expose upper surfaces of the plurality of dummy gates, by using a slurry composite having a second mixing ratio.
Abstract:
A method for fabricating a semiconductor device includes forming a pre-isolation layer covering a fin formed on a substrate, the pre-isolation layer including a lower pre-isolation layer making contact with the fin and an upper pre-isolation layer not making contact with the fin, removing a portion of the upper pre-isolation layer by performing a first polishing process, and planarizing the pre-isolation layer such that an upper surface of the fin and an upper surface of the pre-isolation layer are coplanar by performing a second polishing process for removing the remaining portion of the upper pre-isolation layer.
Abstract:
A method of controlling a chemical mechanical polishing (CMP) process, a temperature control, and a CMP apparatus, the method including measuring actual temperatures of at least two regions in a platen in real time during the CMP process in which a polishing pad attached to the platen polishes a substrate held by a polishing head using slurry and deionized water; receiving the measured actual temperatures of the regions; and individually controlling the actual temperatures of the regions in real time during the CMP process to provide the regions with a predetermined set CMP process temperature.
Abstract:
A method of fabricating a semiconductor device comprises: forming an etch stop layer to cover sidewall and top surfaces of first and second dummy gate patterns on a substrate; and forming an interlayer insulating layer on the substrate and the etch stop layer. The interlayer insulating layer is planarized to expose the etch stop layer on the first and second dummy gate patterns, and the etch stop layer is etched to expose the top surfaces and upper sidewall surfaces of the first and second dummy gate patterns, thereby forming a groove between the interlayer insulating layer and the first and second dummy gate patterns. The dummy gate patterns are removed, and gate electrodes are formed in their places.
Abstract:
A method of fabricating a semiconductor device comprises: forming an etch stop layer to cover sidewall and top surfaces of first and second dummy gate patterns on a substrate; and forming an interlayer insulating layer on the substrate and the etch stop layer. The interlayer insulating layer is planarized to expose the etch stop layer on the first and second dummy gate patterns, and the etch stop layer is etched to expose the top surfaces and upper sidewall surfaces of the first and second dummy gate patterns, thereby forming a groove between the interlayer insulating layer and the first and second dummy gate patterns. The dummy gate patterns are removed, and gate electrodes are formed in their places.