Heterojunction semiconductor device having high blocking capability

    公开(公告)号:US11322606B2

    公开(公告)日:2022-05-03

    申请号:US16969437

    申请日:2019-10-21

    Abstract: A heterojunction semiconductor device comprises a substrate; a second barrier layer is disposed on the second channel layer and a second channel is formed; a trench gate structure is disposed in the second barrier layer; the trench gate structure is embedded into the second barrier layer and is composed of a gate medium and a gate metal located in the gate medium; an isolation layer is disposed in the second channel layer and separates the second channel layer into an upper layer and a lower layer; a first barrier layer is disposed between the lower layer of the second channel layer and the first channel layer and a first channel is formed; a bottom of the metal drain is flush with a bottom of the first barrier layer; and a first metal source is disposed between the second metal source and the first channel layer.

    High-current N-type silicon-on-insulator lateral insulated-gate bipolar transistor
    4.
    发明授权
    High-current N-type silicon-on-insulator lateral insulated-gate bipolar transistor 有权
    大电流N型绝缘体上半导体绝缘栅双极晶体管

    公开(公告)号:US09159818B2

    公开(公告)日:2015-10-13

    申请号:US14349632

    申请日:2012-10-24

    Abstract: A high-current, N-type silicon-on-insulator lateral insulated-gate bipolar transistor, including: a P-type substrate, a buried-oxide layer disposed on the P-type substrate, an N-type epitaxial layer disposed on the oxide layer, and an N-type buffer trap region. A P-type body region and an N-type central buffer trap region are disposed inside the N-type epitaxial layer; a P-type drain region is disposed in the buffer trap region; N-type source regions and a P-type body contact region are disposed in the P-type body region; an N-type base region and a P-type emitter region are disposed in the buffer trap region; gate and field oxide layers are disposed on the N-type epitaxial layer; polycrystalline silicon gates are disposed on the gate oxide layers; and a passivation layer and metal layers are disposed on the surface of the symmetrical transistor. P-type emitter region output and current density are improved without increasing the area of the transistor.

    Abstract translation: 一种高电流,N型绝缘体上的横向绝缘栅双极晶体管,包括:P型衬底,设置在P型衬底上的掩埋氧化物层,设置在P型衬底上的N型外延层 氧化物层和N型缓冲阱捕获区。 P型体区域和N型中央缓冲区捕获区域设置在N型外延层内部; P型漏极区域设置在缓冲陷阱区域中; N型源极区域和P型体接触区域设置在P型体区域中; N型基极区域和P型发射极区域设置在缓冲陷阱区域中; 栅极和场氧化物层设置在N型外延层上; 多晶硅栅极设置在栅极氧化物层上; 并且钝化层和金属层设置在对称晶体管的表面上。 改善P型发射极区域的输出和电流密度,而不增加晶体管的面积。

    Graphene channel silicon carbide power semiconductor transistor

    公开(公告)号:US11158708B1

    公开(公告)日:2021-10-26

    申请号:US16486494

    申请日:2018-09-25

    Abstract: The invention provides a graphene channel silicon carbide power semiconductor transistor, and its cellular structure thereof. Characterized in that, a graphene strip serving as a channel is embedded in a surface of the P-type body region and two ends of the graphene strip are respectively contacted with a boundary between the N+-type source region and the P-type body region and a boundary between the P-type body region and the N-type drift region, and the graphene strip is distributed in a cellular manner in a gate width direction, a conducting channel of a device is still made of graphene; in the case of maintaining basically invariable on-resistance and current transmission capacity, the P-type body regions are separated by the graphene strip, thus enhancing a function of assisting depletion, which further reduces an overall off-state leakage current of the device, and improves a breakdown voltage.

    TRANSVERSE ULTRA-THIN INSULATED GATE BIPOLAR TRANSISTOR HAVING HIGH CURRENT DENSITY
    7.
    发明申请
    TRANSVERSE ULTRA-THIN INSULATED GATE BIPOLAR TRANSISTOR HAVING HIGH CURRENT DENSITY 有权
    具有高电流密度的横向超薄绝缘栅双极晶体管

    公开(公告)号:US20150270377A1

    公开(公告)日:2015-09-24

    申请号:US14439715

    申请日:2012-12-27

    Abstract: A transverse ultra-thin insulated gate bipolar transistor having current density includes: a P substrate, where the P substrate is provided with a buried oxide layer thereon, the buried oxide layer is provided with an N epitaxial layer thereon, the N epitaxial layer is provided with an N well region and P base region therein, the P base region is provided with a first P contact region and an N source region therein, the N well region is provided with an N buffer region therein, the N well region is provided with a field oxide layer thereon, the N buffer region is provided with a P drain region therein, the N epitaxial layer is provided therein with a P base region array including a P annular base region, the P base region array is located between the N well region and the P base region, the P annular base region is provided with a second P contact region and an N annular source region therein, and the second P contact region is located in the N annular source region. The present invention greatly increases current density of a transverse ultra-thin insulated gate bipolar transistor, thus significantly improving the performance of an intelligent power module.

    Abstract translation: 具有电流密度的横向超薄绝缘栅双极晶体管包括:P基板,其中P基板在其上设置有掩埋氧化物层,所述掩埋氧化物层在其上设置有N外延层,提供N外延层 在其中具有N阱区域和P基极区域,P基极区域中设置有第一P接触区域和N源极区域,N阱区域中设置有N个缓冲区域,N阱区域设置有 在其上的场氧化物层,N缓冲区在其中设置有P漏极区,N外延层中设置有包括P环状基极区的P基区阵列,P基区阵列位于N阱之间 区域和P基区域中,P环状基部区域设置有第二P接触区域和N环状源极区域,第二P接触区域位于N环状源极区域中。 本发明大大增加了横向超薄绝缘栅双极晶体管的电流密度,从而显着提高了智能功率模块的性能。

    High-threshold power semiconductor device and manufacturing method thereof

    公开(公告)号:US12107167B2

    公开(公告)日:2024-10-01

    申请号:US17762929

    申请日:2021-01-20

    CPC classification number: H01L29/7851 H01L29/1095 H01L29/778 H01L29/8122

    Abstract: The present invention discloses a high-threshold power semiconductor device and a manufacturing method thereof. The high-threshold power semiconductor device includes, in sequence from bottom to top: a metal drain electrode, a substrate, a buffer layer, and a drift region; further including: a composite column body which is jointly formed by a drift region protrusion, a columnar p-region and a columnar n-region on the drift region, a channel layer, a passivation layer, a dielectric layer, a heavily doped semiconductor layer, a metal gate electrode and a source metal electrode. The composite column body is formed by sequentially depositing a p-type semiconductor layer and an n-type semiconductor layer on the drift region and then etching same. The channel layer and the passivation layer are formed in sequence by deposition. Thus, the above devices are divided into a cell region and a terminal region. The dielectric layer, the heavily doped semiconductor layer, the metal gate electrode and the source metal electrode only exist in the cell region, and the passivation layer of the terminal region extends upwards and is wrapped outside the channel layer. This structure can increase a threshold voltage of the device, improve the blocking characteristics of the device and reduce the size of a gate capacitance.

    Transverse ultra-thin insulated gate bipolar transistor having high current density
    9.
    发明授权
    Transverse ultra-thin insulated gate bipolar transistor having high current density 有权
    具有高电流密度的横向超薄绝缘栅双极晶体管

    公开(公告)号:US09240469B2

    公开(公告)日:2016-01-19

    申请号:US14439715

    申请日:2012-12-27

    Abstract: A transverse ultra-thin insulated gate bipolar transistor having current density includes: a P substrate, where the P substrate is provided with a buried oxide layer thereon, the buried oxide layer is provided with an N epitaxial layer thereon, the N epitaxial layer is provided with an N well region and P base region therein, the P base region is provided with a first P contact region and an N source region therein, the N well region is provided with an N buffer region therein, the N well region is provided with a field oxide layer thereon, the N buffer region is provided with a P drain region therein, the N epitaxial layer is provided therein with a P base region array including a P annular base region, the P base region array is located between the N well region and the P base region, the P annular base region is provided with a second P contact region and an N annular source region therein, and the second P contact region is located in the N annular source region. The present invention greatly increases current density of a transverse ultra-thin insulated gate bipolar transistor, thus significantly improving the performance of an intelligent power module.

    Abstract translation: 具有电流密度的横向超薄绝缘栅双极晶体管包括:P基板,其中P基板在其上设置有掩埋氧化物层,所述掩埋氧化物层在其上设置有N外延层,提供N外延层 在其中具有N阱区域和P基极区域,P基极区域中设置有第一P接触区域和N源极区域,N阱区域中设置有N个缓冲区域,N阱区域设置有 在其上的场氧化物层,N缓冲区在其中设置有P漏极区,N外延层中设置有包括P环状基极区的P基区阵列,P基区阵列位于N阱之间 区域和P基区域中,P环状基部区域设置有第二P接触区域和N环状源极区域,第二P接触区域位于N环状源极区域中。 本发明大大增加了横向超薄绝缘栅双极晶体管的电流密度,从而显着提高了智能功率模块的性能。

Patent Agency Ranking