Abstract:
Technology capable of improving reliability of a semiconductor device is provided. In the present invention, a gate pad GPj formed on a front surface of a semiconductor chip CHP1 is disposed so as to be closer to a source lead SL than to other leads (a drain lead DL and a gate lead GL). As a result, according to the present invention, a distance between the gate pad GPj and the source lead SL can be shortened, and thus a length of the wire Wgj for connecting the gate pad GPj and the source lead SL together can be shortened. Thus, according to the present invention, a parasitic inductance that is present in the wire Wgj can be sufficiently reduced.
Abstract:
There exists a possibility that a semiconductor device configured with a normally-on JFET and a normally-off MOSFET which are coupled in cascade may break by erroneous conduction, etc. A semiconductor device is configured with a normally-on SiCJFET and a normally-off Si-type MOSFET. The normally-on SiCJFET and the normally-off Si-type MOSFET are coupled in cascade and configure a switching circuit. According to one input signal, the normally-on SiCJFET and the normally-off Si-type MOSFET are controlled so as to have a period in which both transistors are set in an OFF state.
Abstract:
The manufacturing yield of a semiconductor device is improved. There is provided a semiconductor device of a cascode coupling system, which is equipped with a plurality of normally-on junction FETs using as a material, a substance larger in bandgap than silicon, and a normally-off MOSFET using silicon as a material. At this time, the semiconductor chip has a plurality of junction FET semiconductor chips (semiconductor chip CHP0 and semiconductor chip CHP1) formed with the junction FETs in a divided fashion, and a MOSFET semiconductor chip (semiconductor chip CHP2) formed with the MOSFET.
Abstract:
The manufacturing yield of a semiconductor device is improved. There is provided a semiconductor device of a cascode coupling system, which is equipped with a plurality of normally-on junction FETs using as a material, a substance larger in bandgap than silicon, and a normally-off MOSFET using silicon as a material. At this time, the semiconductor chip has a plurality of junction FET semiconductor chips (semiconductor chip CHP0 and semiconductor chip CHP1) formed with the junction FETs in a divided fashion, and a MOSFET semiconductor chip (semiconductor chip CHP2) formed with the MOSFET.
Abstract:
A semiconductor device, including a first semiconductor chip including a first substrate having a semiconductor larger in bandgap than silicon, the first semiconductor chip being formed with a first FET including a first gate electrode, a first source, and a first drain, a second semiconductor chip including a second substrate having a semiconductor larger in bandgap than silicon, the second semiconductor chip being formed with a second FET having a second gate electrode, a second source, and a second drain, and a third semiconductor chip including a third substrate having silicon, the third semiconductor chip being formed with a MOSFET including a third gate electrode, a third source, and a third drain. The first semiconductor chip and the second semiconductor chip are mounted over a first chip mounting section, and the third semiconductor chip is mounted over a second chip mounting section.
Abstract:
Technology capable of improving reliability of a semiconductor device is provided. In the present invention, a gate pad GPj formed on a front surface of a semiconductor chip CHP1 is disposed so as to be closer to a source lead SL than to other leads (a drain lead DL and a gate lead GL). As a result, according to the present invention, a distance between the gate pad GPj and the source lead SL can be shortened, and thus a length of the wire Wgj for connecting the gate pad GPj and the source lead SL together can be shortened. Thus, according to the present invention, a parasitic inductance that is present in the wire Wgj can be sufficiently reduced.