摘要:
In order to secure the performance of a SiC-based JFET having an impurity diffusion rate lower than silicon-based one, a gate depth is secured while precisely controlling a distance between gate regions, instead of forming gate regions by ion implantation into the side wall of a trench. This means that a channel region defined by a gate distance and a gate depth should have a high aspect ratio. Further, due to limitations of process, a gate region is formed within a source region. Formation of a highly doped PN junction between source and gate regions causes various problems such as inevitable increase in junction current. In addition, a markedly high energy ion implantation becomes necessary for the formation of a termination structure. In the invention, provided is a vertical channel type SiC power JFET having a floating gate region below and separated from a source region and between gate regions.
摘要:
The present invention makes it possible to improve the accuracy of wet etching and miniaturize a semiconductor device in the case of specifying an active region of a vertical type power MOSFET formed over an SiC substrate by opening an insulating film over the substrate by the wet etching. After a silicon oxide film having a small film thickness and a polysilicon film having a film thickness larger than the silicon oxide film are formed in sequence over an epitaxial layer, the polysilicon film is opened by a dry etching method, successively the silicon oxide film is opened by a wet etching method, and thereby the upper surface of the epitaxial layer in an active region is exposed.
摘要:
In a Schottky barrier diode region, a Schottky barrier diode is formed between an n-type drift layer and a metal layer, and in a body diode region, a p-type semiconductor region, a p-type semiconductor region, and a p-type semiconductor region are formed in order from a main surface side in the drift layer, and a body diode is formed between the p-type semiconductor region and the drift layer. An impurity concentration of the p-type semiconductor region is decreased lower than the impurity concentration of the p-type semiconductor regions, thereby increasing the reflux current flowing through the Schottky barrier diode and preventing the reflux current from flowing through the body diode.
摘要:
In a silicon carbide semiconductor device having a trench type MOS gate structure, the present invention makes it possible to inhibit the operating characteristic from varying. A p-type channel layer having an impurity concentration distribution homogeneous in the depth direction at the sidewall part of a trench is formed by applying angled ion implantation of p-type impurities to a p-type body layer formed by implanting ions having implantation energies different from each other two or more times after the trench is formed. Further, although the p-type impurities are introduced also into an n−-type drift layer at the bottom part of the trench when the p-type channel layer is formed by the angled ion implantation, a channel length is stipulated by forming an n-type layer having an impurity concentration higher than those of the p-type channel layer, the p−-type body layer, and the n−-type drift layer between the p−-type body layer and the n−-type drift layer. By those measures, it is possible to inhibit the operating characteristic from varying.
摘要:
In a semiconductor device, in a gate insulating film which is formed on/over an inner wall of a trench, the film thickness of a part of a gate insulating film formed so as to cover a corner of the trench is made thicker than the film thickness of a part of the gate insulating film part formed on/over a side face of the trench.
摘要:
In order to secure the performance of a SiC-based JFET having an impurity diffusion rate lower than silicon-based one, a gate depth is secured while precisely controlling a distance between gate regions, instead of forming gate regions by ion implantation into the side wall of a trench. This means that a channel region defined by a gate distance and a gate depth should have a high aspect ratio. Further, due to limitations of process, a gate region is formed within a source region. Formation of a highly doped PN junction between source and gate regions causes various problems such as inevitable increase in junction current. In addition, a markedly high energy ion implantation becomes necessary for the formation of a termination structure. In the invention, provided is a vertical channel type SiC power JFET having a floating gate region below and separated from a source region and between gate regions.
摘要:
First and second p-type semiconductor regions (electric-field relaxation layers) are formed by ion implantation using a dummy gate and side wall films on both sides of the dummy gate as a mask. In this manner, it is possible to reduce a distance between the first p-type semiconductor region and a trench and a distance between the second p-type semiconductor region and the trench, and symmetry of the first and second p-type semiconductor regions with respect to the trench can be enhanced. As a result, semiconductor elements can be miniaturized, and on-resistance and an electric-field relaxation effect, which are in a trade-off relationship, can be balanced, so that characteristics of the semiconductor elements can be improved.
摘要:
A semiconductor device includes: a first conductivity type semiconductor substrate made of silicon carbide; a second conductivity type body region in a device region of the semiconductor substrate; a first conductivity type source region formed in the body region; and a gate electrode formed on the body region through gate insulating films. The semiconductor device further includes, in a termination region of the semiconductor substrate, second conductivity type RESURF layers, and an edge termination region formed in the RESURF layers. Then, the RESURF layers and a front surface of the semiconductor substrate adjacent to the RESURF layers are covered by an oxidation-resistant insulating film.
摘要:
The present invention makes it possible to improve the accuracy of wet etching and miniaturize a semiconductor device in the case of specifying an active region of a vertical type power MOSFET formed over an SiC substrate by opening an insulating film over the substrate by the wet etching. After a silicon oxide film having a small film thickness and a polysilicon film having a film thickness larger than the silicon oxide film are formed in sequence over an epitaxial layer, the polysilicon film is opened by a dry etching method, successively the silicon oxide film is opened by a wet etching method, and thereby the upper surface of the epitaxial layer in an active region is exposed.
摘要:
First and second p-type semiconductor regions (electric-field relaxation layers) are formed by ion implantation using a dummy gate and side wall films on both sides of the dummy gate as a mask. In this manner, it is possible to reduce a distance between the first p-type semiconductor region and a trench and a distance between the second p-type semiconductor region and the trench, and symmetry of the first and second p-type semiconductor regions with respect to the trench can be enhanced. As a result, semiconductor elements can be miniaturized, and on-resistance and an electric-field relaxation effect, which are in a trade-off relationship, can be balanced, so that characteristics of the semiconductor elements can be improved.