Abstract:
A matching network circuit and an associated apparatus are provided. The matching network circuit includes a matching unit coupled between a common path port and a first path port of the matching network circuit, and an impedance unit coupled between the common path port and a second path port of the matching network circuit. The common path port is utilized for connecting the matching network circuit to a common path, the first path port is utilized for connecting the matching network circuit to a first device on a first path, and the second path port is utilized for connecting the matching network circuit to a second device on a second path. The matching unit is arranged for performing impedance matching between the common path port and the first path port, and the impedance unit is arranged for performing impedance matching between the common path port and the second path port.
Abstract:
A frequency tunable filter and an associated apparatus are provided, where the frequency tunable filter may include a plurality of ports including an input port and an output port, and may further include an inductor-capacitor (LC) resonator, a switching unit that is coupled between the LC resonator and a ground terminal of the frequency tunable filter, and a resonance adjustment unit that is coupled between the LC resonator and the ground terminal. For example, the LC resonator may include a first terminal coupled to each of the input port and the output port, and may further include a second terminal, the switching unit may selectively provide a conduction path between the second terminal of the LC resonator and the ground terminal, and the resonance adjustment unit may selectively change a resonance characteristic of the LC resonator.
Abstract:
A compensation circuit of a power amplifier includes a varactor, a voltage sensor and a control circuit. The varactor is coupled to an input terminal of the power amplifier. The voltage sensor is arranged for detecting an amplitude of an input signal of the power amplifier to generate a detecting result. The control circuit is coupled to the varactor and the voltage sensor, and is arranged for controlling a bias voltage of the varactor to adjust a capacitance of the varactor according to the detecting result.
Abstract:
A transceiver includes: a first transforming network arranged for using a first input impedance to receive a first modulated signal and using a first output impedance to output a first transformed signal during a transmitting mode of a first communication standard, and for using the first input impedance to receive a second modulated signal and using a second output impedance to output a second transformed signal during the transmitting mode of a second communication standard; a second transforming network arranged for using a second input impedance to receive the second transformed signal and using a third output impedance to output a first RF signal to a connecting port of the transceiver during the transmitting mode of the second communication standard; a power amplifier, arranged to generate a second RF signal; and a switching circuit for selectively coupling the second transformed signal to the second transforming network.
Abstract:
A transceiver includes: a first transforming network arranged for using a first input impedance to receive a first modulated signal and using a first output impedance to output a first transformed signal during a transmitting mode of a first communication standard, and for using the first input impedance to receive a second modulated signal and using a second output impedance to output a second transformed signal during the transmitting mode of a second communication standard; a second transforming network arranged for using a second input impedance to receive the second transformed signal and using a third output impedance to output a first RF signal to a connecting port of the transceiver during the transmitting mode of the second communication standard; a power amplifier, arranged to generate a second RF signal; and a switching circuit for selectively coupling the second transformed signal to the second transforming network.
Abstract:
A harmonic-rejection mixer apparatus includes a mixing circuit and a combining circuit. The mixing circuit receives mixes an input signal and a first local oscillator (LO) signal to generate a first output signal, and mixes the same input signal and a second LO signal to generate a second output signal, wherein the first LO signal and the second LO signal have a same frequency but different phases. The combining circuit combines the first output signal and the second output signal, wherein harmonic rejection is at least achieved by combination of the first output signal and the second output signal.
Abstract:
A frequency tunable filter and an associated apparatus are provided, where the frequency tunable filter may include a plurality of ports including an input port and an output port, and may further include an inductor-capacitor (LC) resonator, a switching unit that is coupled between the LC resonator and a ground terminal of the frequency tunable filter, and a resonance adjustment unit that is coupled between the LC resonator and the ground terminal. For example, the LC resonator may include a first terminal coupled to each of the input port and the output port, and may further include a second terminal, the switching unit may selectively provide a conduction path between the second terminal of the LC resonator and the ground terminal, and the resonance adjustment unit may selectively change a resonance characteristic of the LC resonator.
Abstract:
The present invention discloses a transmit-receive (TR) front end. The TR front end comprises a low-noise amplifier (LNA); a power amplifier (PA); a transformer, coupled to the PA, for increasing a voltage swing and a power transmission of the PA; and a TR switch, coupled to the transformer at a first end and coupled to the LNA at a second end, wherein the second end is capable of being coupled to an antenna; wherein the LNA is single ended and there is no transformer between the LNA and the TR switch.
Abstract:
The present invention discloses a transmit-receive (TR) front end. The TR front end comprises a low-noise amplifier (LNA); a power amplifier (PA); a transformer, coupled to the PA, for increasing a voltage swing and a power transmission of the PA; and a TR switch, coupled to the transformer at a first end and coupled to the LNA at a second end, wherein the second end is capable of being coupled to an antenna; wherein the LNA is single ended and there is no transformer between the LNA and the TR switch.
Abstract:
A matching network circuit and an associated apparatus are provided. The matching network circuit includes a matching unit coupled between a common path port and a first path port of the matching network circuit, and an impedance unit coupled between the common path port and a second path port of the matching network circuit. The common path port is utilized for connecting the matching network circuit to a common path, the first path port is utilized for connecting the matching network circuit to a first device on a first path, and the second path port is utilized for connecting the matching network circuit to a second device on a second path. The matching unit is arranged for performing impedance matching between the common path port and the first path port, and the impedance unit is arranged for performing impedance matching between the common path port and the second path port.