Abstract:
Various methods and circuital arrangements for biasing one or more gates of stacked transistors of an amplifier are possible where the amplifier is configured to operate in at least an active mode and a standby mode. Circuital arrangements can reduce bias circuit standby current during operation in the standby mode while allowing a quick recovery to normal operating conditions of the amplifier. Biasing an input transistor of the stacked transistors can be obtained by using a replica stack circuit.
Abstract:
A receiver front end having low noise amplifiers (LNAs) is disclosed herein. A cascode having a “common source” configured input FET and a “common gate” configured output FET can be turned on or off using the gate of the output FET. A first switch is provided that allows a connection to be either established or broken between the source terminal of the input FET of each LNA. A drain switch is provided between the drain terminals of input FETs to place the input FETs in parallel. This increases the gm of the input stage of the amplifier, thus improving the noise figure of the amplifier.
Abstract:
The disclosed technology relates to a method for improving performance of a feedback circuit comprising an amplifier and a feedback network, wherein the feedback circuit has at least one tunable component. In one aspect, the method comprises measuring first amplitude values at an input of the amplifier and second amplitude values at an output of the amplifier, estimating a linear open-loop gain of the amplifier based on both the amplitude values, estimating a linear finite gain error based on the estimated gain and the second amplitude values, subtracting the linear finite gain error from the first amplitude values to derive a set of samples containing second error information, deriving an signal-to-noise-plus-distortion ratio estimate based on the variance of the set of samples and a variance of the second amplitude values, and adjusting the feedback circuit in accordance with the signal-to-noise-plus-distortion ratio estimate.
Abstract:
A receiver front end capable of receiving and processing intraband non-contiguous carrier aggregate (CA) signals using multiple low noise amplifiers (LNAs) is disclosed herein. A cascode having a “common source” input stage and a “common gate” output stage can be turned on or off using the gate of the output stage. A first switch is provided that allows a connection to be either established or broken between the source terminal of the input stage of each cascode. Further switches used for switching degeneration inductors, gate/sources caps and gate to ground caps for each legs can be used to further improve the matching performance of the invention.
Abstract:
Various methods and circuital arrangements for biasing one or more gates of stacked transistors of an amplifier are possible where the amplifier is configured to operate in at least an active mode and a standby mode. Circuital arrangements can reduce bias circuit standby current during operation in the standby mode while allowing a quick recovery to normal operating conditions of the amplifier. Biasing an input transistor of the stacked transistors can be obtained by using a replica stack circuit.
Abstract:
In accordance with an embodiment, a circuit includes a low noise amplifier transistor disposed on a first integrated circuit, a single pole multi throw (SPMT) switch disposed on a second integrated circuit, and a bypass switch coupled between a control node of the low noise amplifier transistor and an output node of the low noise amplifier transistor. The SPMT switch couples a plurality of module input terminals to a control node of the low noise amplifier transistor, and the bypass switch including a first switch coupled between the control node of the low noise amplifier transistor and an intermediate node, a second switch coupled between the intermediate node and the output node of the low noise amplifier transistor, and a third switch coupled between the intermediate node and a first reference node. The first integrated circuit and the second integrated circuit are disposed on a substrate.
Abstract:
One example includes an amplifier system. The amplifier system includes an input stage configured to receive an input pulse signal and to generate a reference voltage pulse based on the input pulse signal. The amplifier system also includes an amplifier stage that receives at least one power voltage and is configured to amplify the reference voltage pulse and to provide pulse-shaping of the amplified reference voltage pulse based on a change of amplitude of the at least one power voltage resulting from an amplitude of the reference voltage pulse.
Abstract:
A device includes an operational-amplifier including an amplifier-part amplifying signals and transmitting amplified signals to a first and a second nodes, and an output-part connected to the first and second nodes and outputting signals from a first and a second outputs. The device includes a first and a second chopper switches and a first and second phase-compensation capacity elements. A first capacitance switch switches between a first connection-state and a second connection-state. In the first connection-state, the first phase-compensation-capacity element is connected between the first node and the first output and the second phase-compensation-capacity element is connected between the second node and the second-output. In the second connection state, the first phase-compensation-capacity element is connected between the second-node and the second output and the second phase-compensation-capacity element is connected between the first node and the first output.
Abstract:
In one embodiment, the present disclosure includes a circuit comprising a first power amplifier stage having an input to receive an input signal, an output coupled to an output node, the first power amplifier stage receiving a time-varying power supply voltage. The circuit further includes a second power amplifier stage configured in parallel with the first power amplifier stage having an input to receive the input signal, an output coupled to the output node, the second power amplifier stage receiving the time-varying power supply voltage. A first gain of the first power amplifier stage decreases when the power supply voltage is in a first low voltage range, and a second gain of the second power amplifier stage compensates for the decreasing gain of the first power amplifier stage in the first low voltage range.
Abstract:
A device includes an operational-amplifier including an amplifier-part amplifying signals and transmitting amplified signals to a first and a second nodes, and an output-part connected to the first and second nodes and outputting signals from a first and a second outputs. The device includes a first and a second chopper switches and a first and second phase-compensation capacity elements. A first capacitance switch switches between a first connection-state and a second connection-state. In the first connection-state, the first phase-compensation-capacity element is connected between the first node and the first output and the second phase-compensation-capacity element is connected between the second node and the second-output. In the second connection state, the first phase-compensation-capacity element is connected between the second-node and the second output and the second phase-compensation-capacity element is connected between the first node and the first output.