Abstract:
A transmitting device includes a transmitting chain, a configurable power amplifier device and an impedance tuning circuit. The transmitting chain is arranged to generate a radio frequency signal. The configurable power amplifier device is arranged to support at least a first power amplifier configuration and a second power amplifier configuration, wherein the configurable power amplifier device employs the first power amplifier configuration to receive and amplify the radio frequency signal when the transmitting device is operated in a first operation mode, and employs the second power amplifier configuration to receive and amplify the radio frequency signal when the transmitting device is operated in a second operation mode. The impedance tuning circuit is arranged to adjust an output impedance of the configurable power amplifier device employing the second power amplifier configuration when the transmitting device is operated in the second operation mode.
Abstract:
A method for controlling an electrical property of a passive device during a fabrication of an integrated component includes providing a substrate, manufacturing the passive device on the substrate, measuring the electrical property of the passive device to obtain a measuring result, determining at least one layout pattern corresponding to at least one later manufacturing process by the measuring result for adjusting the electrical property of the passive device, and continuing the rest of the fabrication including the at least one later manufacturing process of the integrated component.
Abstract:
An emergency mode is provided in a portable electronic device for locating a survivor in a disaster. The device includes a wireless antenna to transmit and receive wireless signals; a memory to store one or more identifiers; a user interface to receive a command that enables the emergency mode. The device also includes one or more processors, which, in response to the command, detect via the wireless receiver a predetermined identifier that matches a stored identifier identifying a sender of the predetermined identifier as a trusted node. When the predetermined identifier and a timing measurement frame are received from the trusted node, the device sends a response to the trusted node to indicate its presence.
Abstract:
A multi-standards transceiver includes: a first synthesizer arranged to generate a first oscillating signal; a second synthesizer arranged to generate a second oscillating signal; a first transceiver; a second transceiver; and a multiplexer coupled to the first synthesizer and the second synthesizer; wherein when the multi-standards transceiver operates under a first frequency mode, the first transceiver is arranged to use the first oscillating signal to modulate a first analog signal and the multiplexer is arranged to output the second oscillating signal to the second transceiver so that the second transceiver uses the second oscillating signal to modulate a second analog signal.
Abstract:
An emergency mode is provided in a portable electronic device for locating a survivor in a disaster. The device includes a wireless antenna to transmit and receive wireless signals; a memory to store one or more identifiers; a user interface to receive a command that enables the emergency mode. The device also includes one or more processors, which, in response to the command, detect via the wireless receiver a predetermined identifier that matches a stored identifier identifying a sender of the predetermined identifier as a trusted node. When the predetermined identifier and a timing measurement frame are received from the trusted node, the device sends a response to the trusted node to indicate its presence.
Abstract:
A transceiver includes: a first transforming network arranged for using a first input impedance to receive a first modulated signal and using a first output impedance to output a first transformed signal during a transmitting mode of a first communication standard, and for using the first input impedance to receive a second modulated signal and using a second output impedance to output a second transformed signal during the transmitting mode of a second communication standard; a second transforming network arranged for using a second input impedance to receive the second transformed signal and using a third output impedance to output a first RF signal to a connecting port of the transceiver during the transmitting mode of the second communication standard; a power amplifier, arranged to generate a second RF signal; and a switching circuit for selectively coupling the second transformed signal to the second transforming network.
Abstract:
A transceiver includes: a first transforming network arranged for using a first input impedance to receive a first modulated signal and using a first output impedance to output a first transformed signal during a transmitting mode of a first communication standard, and for using the first input impedance to receive a second modulated signal and using a second output impedance to output a second transformed signal during the transmitting mode of a second communication standard; a second transforming network arranged for using a second input impedance to receive the second transformed signal and using a third output impedance to output a first RF signal to a connecting port of the transceiver during the transmitting mode of the second communication standard; a power amplifier, arranged to generate a second RF signal; and a switching circuit for selectively coupling the second transformed signal to the second transforming network.
Abstract:
A method for controlling an electrical property of a passive device during a fabrication of an integrated component includes providing a substrate, manufacturing the passive device on the substrate, measuring the electrical property of the passive device to obtain a measuring result, determining at least one layout pattern corresponding to at least one later manufacturing process by the measuring result for adjusting the electrical property of the passive device, and continuing the rest of the fabrication including the at least one later manufacturing process of the integrated component.