Abstract:
A cooling system for a vehicle may include at least two air ducts formed at both side of an exterior air intake port; a low temperature radiator to release heat of coolant into the air; a high temperature radiator to release heat of coolant into the air; an ancillary low temperature radiator to release heat of coolant into the air; an ancillary high temperature radiator disposed inside of another one of the at least two air duct to release heat of coolant into the air; a turbocharger; an intercooler cooling compressed air generated from the turbocharger by using coolant flowed via the low temperature radiator and the high temperature radiator; a compressor; a condenser cooling the compressed refrigerant generated from the compressor by using coolant flowed via the low temperature radiator; a high temperature coolant passage; and a low temperature coolant passage.
Abstract:
A system for controlling an air flow rate into a vehicle engine room may include a fan shroud in which a cooling fan including a fan motor and a fan blade may be mounted, a rotary shutter which may be provided in the fan shroud while corresponding to an operation area of the fan blade, and in which an area through which air passes may be varied in a circumferential direction, a plurality of flaps which may be provided in the fan shroud, and opens and closes a part of a portion where the rotary shutter may be not mounted, and a control unit which controls an open area of the rotary shutter, operations of opening and closing the plurality of flaps, and an operation of the cooling fan in accordance with an operating state of a vehicle.
Abstract:
A system for controlling a flow rate of air into a vehicle engine compartment, may include a radiator cooling a coolant; a coolant inflow tank provided to one side of the radiator and temporarily storing the coolant that cools an engine; and a coolant exhaust tank provided to another side of the radiator and temporarily storing the coolant circulating past a cooling fin of the radiator from the coolant inflow tank.
Abstract:
A system for controlling an air flow rate into a vehicle engine room may include a fan shroud in which a cooling fan including a fan motor and a fan blade is mounted, a radial portion which is provided in the fan shroud while corresponding to an operation area of the fan blade, including a shutter hub positioned to a center thereof and a plurality of radial units disposed to the shutter hub and including a plurality of radial shutters selectively unfolded from the shutter hub to external circumference directions or selectively folded to the shutter hub direction, and a radial unit operating portion unfolding the plurality of radial units from the shutter hub to the external circumference directions or folding the plurality of radial units to the shutter hub direction.
Abstract:
A system for controlling a flow rate of air into a vehicle engine compartment may include a radiator cooling coolant, a coolant inflow tank provided to one side of the radiator and temporarily storing coolant that cools an engine, a coolant exhaust tank provided to the other side of the radiator and temporarily storing coolant circulating past a cooling fin of the radiator from the coolant inflow tank, Phase Change Material (PCM) tanks provided to an exterior side of the coolant inflow tank and coolant exhaust tank and storing a phase change material heat-exchanging with the coolant stored in the coolant inflow tank and the coolant exhaust tank and a conversion device converting a phase of the phase change material.
Abstract:
An air flow control system of a vehicle may include an engine mixing air and fuel and generating a rotation force by combusting the mixture of the air and the fuel in a combustion chamber, main ducts provided in a front side of the vehicle to transmit air to the combustion chamber of the engine, heat dissipation members provided adjacent to the main ducts to cool a fluid flowing inside thereof through heat exchange with external air, assistant ducts branched from the main ducts to transmit air flowing in the main ducts to the heat dissipation members, and control valves provided in the assistant ducts to control air supplied to the heat dissipation members.
Abstract:
A cooling and thermoelectric power generating system for a vehicle may include a low temperature radiator disposed at an ambient air intake which is configured to allow ambient air in front of the vehicle to be introduced to an engine room, a coolant line adapted that coolant passing through the low temperature radiator is circulated again through the low temperature radiator via a water-cooled condenser, a refrigerant line adapted that refrigerant is flowed through the condenser, and a thermoelectric generator adapted that coolant flowing through the coolant line and refrigerant flowing through the refrigerant line are passed therethrough, in which the thermoelectric generator performs thermoelectric generation by using temperature difference between coolant flowing through the coolant line and refrigerant flowing through the refrigerant line.
Abstract:
A vehicle engine cooling system may include a high temperature radiator in which a high temperature coolant for cooling an engine by using ambient air flows, a low temperature radiator in which a low temperature coolant for cooling a water-cooled condenser by using ambient air flows, an integrated cooler configured to cool a low pressure EGR gas and air which has passed through a turbocharger, a high temperature radiator circulation line provided to allow the high temperature coolant to circulate the high temperature radiator, the engine, and the integrated cooler, a low temperature radiator circulation line provided to allow the low temperature coolant to circulate the low temperature radiator, the condenser, and the integrated cooler, and a plurality of control valves provided on the high temperature radiator circulation line and the low temperature radiator circulation line.
Abstract:
An apparatus for controlling air flow to an engine room of a vehicle may include vertical support units provided as a pair, a plurality of flaps provided to be unfolded or folded in the vertical support units, a delivery unit configured to selectively fold or unfold the flaps, a rotary unit configured to selectively rotate the flaps, and a controller configured to control operations of the delivery unit and the rotary unit according to operational states of a vehicle.
Abstract:
An engine room cooling system may include an encapsulation covering an intake manifold and an exhaust manifold of an engine of a vehicle, a main duct guiding traveling wind flowing into the vehicle to a side of the encapsulation, an encapsulation intake duct branched from the main duct and formed toward the intake manifold within the encapsulation, an encapsulation exhaust duct branched from the main duct and formed toward the exhaust manifold within the encapsulation, and an intake duct valve disposed adjacent to the encapsulation intake duct and controlling air flow from the main duct to the encapsulation intake duct or to the encapsulation exhaust duct.