Abstract:
An absorption chiller system includes a generator section, a condenser section, an evaporator section and an absorber section all in fluid communication with each other and which operate to circulate a refrigerant therethrough. The evaporator section includes a transport membrane heat exchanger. The transport membrane heat exchanger includes a first and a second flow path. The first flow path is operable to flow the refrigerant therethrough under a vacuum pressure that is low enough to vaporize the refrigerant within the first flow path. The second flow path is operable to pass a fluid having water therethrough. Both water and heat are transferred from the fluid in the second flow path to the refrigerant in the first flow path through a membrane-based material of the transport membrane heat exchanger, such that the fluid passing through the second flow path has at least a portion of its water removed and is cooled.
Abstract:
An intake and exhaust system of an internal combustion engine includes an exhaust gas recirculation passage (35) communicates a part of an exhaust passage (7) downstream of a turbine with a part of an intake passage (6) upstream of a compressor and a cooling circuit (51), the cooling circuit including a first evaporator (52) provided in a part of the exhaust passage downstream of the turbine and upstream of a junction with the exhaust gas recirculation passage and storing a medium, an ejector pump (54) using vapor from the first evaporator as a driving flow, a condenser (57) for cooling and condensing the vapor ejected from the ejector pump and returning the condensed medium to the first evaporator, and a second evaporator (55) provided in the exhaust gas recirculation passage to cool the exhaust gas passing through the exhaust gas recirculation passage by evaporating a medium stored therein with a negative pressure created by the ejector pump.
Abstract:
A piston with a cooling gallery containing an open cell radiator is provided. The radiator has a large thermally conductive surface area that acts as a heat-sink to remove heat from the piston. Heat from the piston is transmitted from the radiator to cooling oil that enters the cooling gallery via an oil inlet formed in a floor of the cooling gallery and exits the cooling gallery via an oil outlet. The piston comprises a piston body including an upper part presenting an upper combustion surface and an undercrown surface. A ring belt depends from the upper combustion surface, and the cooling gallery extends around the piston body beneath the undercrown surface radially inwardly of the ring belt. The radiator includes a plurality of fins extending annularly around the cooling gallery. The fins of the radiator are spaced from one another by gaps extending annularly around the cooling gallery.
Abstract:
A rankine cycle system includes: an internal combustion engine; a gas-liquid separator; a first pump; a steam generator; a superheater; an expander; a condenser; a first control valve; and a controller.
Abstract:
A vehicle engine cooling system may include a high temperature radiator in which a high temperature coolant for cooling an engine by using ambient air flows, a low temperature radiator in which a low temperature coolant for cooling a water-cooled condenser by using ambient air flows, an integrated cooler configured to cool a low pressure EGR gas and air which has passed through a turbocharger, a high temperature radiator circulation line provided to allow the high temperature coolant to circulate the high temperature radiator, the engine, and the integrated cooler, a low temperature radiator circulation line provided to allow the low temperature coolant to circulate the low temperature radiator, the condenser, and the integrated cooler, and a plurality of control valves provided on the high temperature radiator circulation line and the low temperature radiator circulation line.
Abstract:
Described is a drive unit of a motor vehicle that is provided with an internal combustion engine (10), with a combustion air supply (13, 14) having a low-pressure compressor (11), a high-pressure compressor (12) and a combustion air cooling unit (13, 14), and with an exhaust gas withdrawal via which the exhaust gas formed in the internal combustion engine (10) is withdrawn. Furthermore, the drive unit has a cooling system with at least one cooling circuit (1) in which are to arranged a heat exchanger, through which flows a working medium and which can be cooled by atmospheric air, at least one exhaust gas cooler integrated into the exhaust gas withdrawal, and the combustion air cooling unit. The combustion air cooling unit has a combustion air intercooler (13) and a main combustion air cooler (14) that are thermally coupled to the at least one cooling circuit (1) in such a way that in the direction of flow of the combustion air, the combustion air intercooler (13) is disposed between the low-pressure compressor (11) and the high-pressure compressor (12), and the main combustion air cooler (14) is disposed downstream of the high-pressure compressor (12). The described invention is characterized in that at least one first cooling circuit (20) as well as one second cooling circuit (21) are provided that are hydraulically uncoupled via at least one heat exchanger, via which the first cooling circuit (20) and the second cooling circuit (21) are in thermal contact, and in that for a working medium contained in the second cooling circuit (21) an at least partial phase transition can be brought about during an operating phase of the cooling system.
Abstract:
Heat transfer in coolant circuits, as in an internal combustion engine for example, can be beneficially enhanced by maintaining the coolant in a nucleate boiling state, but undesirable transitions to a film boiling state are then possible. The disclosed coolant circuit has selected surface(s) that have a tendency to experience high heat flux in comparison to adjacent surfaces in the coolant circuit. These surfaces are provided with a surface configuration, such as a matrix of nucleation cavities, which has a tendency to inhibit a change in boiling state. The surface configuration can be provided on the parent coolant circuit surface or on a surface of an insert positioned in the coolant circuit. Thus, transitions to film boiling can be effectively avoided at locations in the coolant circuit that are susceptible to such transitions.
Abstract:
The invention concerns a motor vehicle cooling and depolluting device designed for conditioning said vehicle passenger compartment and for cooling its cylinder block (22). The elements of the device are connected through a main tube (25) containing an antifreeze liquid. The device also comprises a temperature and pressure control valve (17), to maintain a constant pressure in the cylinder block (22) and located downstream of the cylinder block (22), a ventilated water-air exchanger (6) enabling a motor vehicle passenger compartment to be cooled, a ventilated water-air exchanger (1) enabling a motor vehicle engine compartment to be cooled, at least a cold water tank (3) for cooling upon start-up of the motor vehicle and located between the ventilated water-air exchanger (6) and the evaporator (24) and a solenoid valve (9) for controlling the temperature inside the motor vehicle passenger compartment and located downstream of the ventilated water-air exchanger (6). A water-fume exchanger (21), located downstream of a water-fume exchanger (20), serves to depollute the exhaust gases of an engine (18) by cooling said exhaust gases and condensing its hydrocarbon residues as well as by trapping the particles of said exhaust gases.
Abstract:
A phase-change cooling system for a vehicle includes an electronic control device for receiving power from a power source and having a first temperature. The phase-change cooling system also includes a condenser of an air conditioning system of the vehicle thermally communicating with the electronic control device and having a second temperature less than the first temperature to remove heat from the electronic control device due to a phase-change of coolant in the condenser.
Abstract:
Heat transfer in coolant circuits, as in an internal combustion engine for example, can be beneficially enhanced by maintaining the coolant in a nucleate boiling state, but undesirable transitions to a film boiling state are then possible. The disclosed coolant circuit has selected surface(s) that have a tendency to experience high heat flux in comparison to adjacent surfaces in the coolant circuit. These surfaces are provided with a surface configuration, such as a matrix of nucleation cavities, which has a tendency to inhibit a change in boiling state. The surface configuration can be provided on the parent coolant circuit surface or on a surface of an insert positioned in the coolant circuit. Thus, transitions to film boiling can be effectively avoided at locations in the coolant circuit that are susceptible to such transitions.