摘要:
A composite structure comprising two polytetrafluoroethylene porous layers and a framework structural member having a plurality of gaps or openings, the framework structural member being disposed between the two polytetrafluoroethylene porous layers, wherein the composite structure is structured such that the polytetrafluoroethylene porous layers are united together by being adhered with each other through the gaps or openings of the framework structural member and such that the respective polytetrafluoroethylene porous layers (A1) and (A2) are united with the framework structural member closely along the surfaces of the respective constituent elements of the framework structural member in such a manner as to wrap the respective elements. The method of manufacturing the composite structure is characterized in that it includes a step of applying pressure through a mass of fine particles.
摘要:
A composite structure comprising two polytetrafluoroethylene porous layers and a framework structural member having a plurality of gaps or openings, the framework structural member being disposed between the two polytetrafluoroethylene porous layers, wherein the composite structure is structured such that the polytetrafluoroethylene porous layers are united together by being adhered with each other through the gaps or openings of the framework structural member and such that the respective polytetrafluoroethylene porous layers (A1) and (A2) are united with the framework structural member closely along the surfaces of the respective constituent elements of the framework structural member in such a manner as to wrap the respective elements. The method of manufacturing the composite structure is characterized in that it includes a step of applying pressure through a mass of fine particles.
摘要:
Disclosed are expanded polytetrafluoroethylene products, such as porous polytetrafluoroethylene tubes, having high axial tear strength and a process for their production. Each expanded polytetrafluoroethylene product has a microstructure, which comprises fibrils and nodes interconnected with each other by the fibrils, and has an axial tear strength of not lower than 6,000 gf/mm as calculated in accordance with the following formula: L/[T×(V/100)] where L (gf) is an axial tear load, T (mm) is a wall thickness, and V (%) is a volume ratio of resin. The process for the production of the expanded polytetrafluoroethylene product includes a high-speed extrusion step.
摘要:
Disclosed are expanded polytetrafluoroethylene products, such as porous polytetrafluoroethylene tubes, having high axial tear strength and a process for their production. Each expanded polytetrafluoroethylene product has a microstructure, which comprises fibrils and nodes interconnected with each other by the fibrils, and has an axial tear strength of not lower than 6,000 gf/mm as calculated in accordance with the following formula: L/[T×(V/100)] where L (gf) is an axial tear load, T (mm) is a wall thickness, and V (%) is a volume ratio of resin. The process for the production of the expanded polytetrafluoroethylene product includes a high-speed extrusion step.
摘要翻译:公开了具有高轴向撕裂强度的膨胀聚四氟乙烯产品,例如多孔聚四氟乙烯管,以及它们的生产方法。 每个膨胀的聚四氟乙烯产品具有显微组织,其包括通过原纤维相互连接的原纤维和节点,并且具有根据下式计算的不低于6,000gf / mm的轴向撕裂强度:L / [T×( V / 100)]其中L(gf)是轴向撕裂载荷,T(mm)是壁厚,V(%)是树脂的体积比。 膨胀聚四氟乙烯制品的生产方法包括高速挤出步骤。
摘要:
A composite structure comprising two polytetrafluoroethylene porous layers and a framework structural member having a plurality of gaps or openings, the framework structural member being disposed between the two polytetrafluoroethylene porous layers, wherein the composite structure is structured such that the polytetrafluoroethylene porous layers are united together by being adhered with each other through the gaps or openings of the framework structural member and such that the respective polytetrafluoroethylene porous layers (A1) and (A2) are united with the framework structural member closely along the surfaces of the respective constituent elements of the framework structural member in such a manner as to wrap the respective elements. The method of manufacturing the composite structure is characterized in that it includes a step of applying pressure through a mass of fine particles.
摘要:
A method of manufacturing a perforated porous resin substrate, the method including the following steps: Step 1 of forming at least one perforation penetrating in the thickness direction from a first surface to a second surface in a porous resin substrate made of a resin material containing a fluoropolymer; Step 2 of etching treatment conducted by putting an etchant containing an alkali metal in contact with the wall face of each perforation; and Step 3 of putting an oxidizable compound or a solution thereof in contact with a degenerative layer generated by the etching treatment, and thereby removing the degenerative layer. A method of manufacturing a porous resin substrate in which electrical conductivity is afforded to the wall face of the perforation.
摘要:
An expanded porous polytetrafluoroethylene film having residual strain of at most 11.0% as measured after a load required to indent a rod, which is in a columnar form that its outer diameter is at least 2 mm and at least 1.9 times as much as the thickness of the film, and has a smooth plane perpendicular to its axis at a free end surface thereof and a modulus of longitudinal elasticity of at least 1.0×104 kgf/mm2, up to 20% of the film thickness at a strain rate of 100%/min from the free end surface is applied repeatedly 20 times, and a production process of the porous film, in which a step of compressing an expanded porous polytetrafluoroethylene film having a high draw ratio is provided.
摘要翻译:一种膨胀的多孔聚四氟乙烯膜,其具有至少11.0%的残余应变,所述残余应变在压缩所需的负载之后测量,所述负载是圆柱形形式,其外径为至少2mm,至少为其厚度的1.9倍 膜,并且在其自由端面处具有垂直于其轴线的平滑平面,并且在100%/ min的应变速率下,纵向弹性模量至少为1.0×10 4 kgf / mm 2,至多20%的膜厚度 从自由端面反复施加20次,并且提供压缩膨胀率高的膨体多孔聚四氟乙烯膜的工序的多孔膜的制造方法。
摘要:
An object of the present invention is to provide a method for manufacturing a porous material in which complicated and fine through portions, recessed portions, and the like have been patterned. It is to provide a patterned porous molded product or nonwoven fabric, in which a plated layer has been selectively formed on the surfaces of the through portions and the recessed portions. With the invention, a mask having through portions in a pattern is placed on at least one side of the porous molded product or the nonwoven fabric. A fluid or a fluid containing abrasive grains is sprayed from above the mask, thereby to form through portions or recessed portions, or both of them, to which the opening shape of each through portion of the mask has been transferred, in the porous molded product or the nonwoven fabric. The invention provides a porous molded product or a nonwoven fabric in which a plated layer has been selectively formed on the surfaces of the through portions or the recessed portions, or both of these, an electric circuit component, or the like.
摘要:
A production process of a perforated porous resin base, comprising Step 1 of impregnating the porous structure of a porous resin base with a liquid or solution; Step 2 of forming a solid substance from the liquid or solution impregnated; Step 3 of forming a plurality of perforations extending through from the first surface of the porous resin base having the solid substance within the porous structure to the second surface in the porous resin base; and Step 4 of melting or dissolving the solid substance to remove it from the interior of the porous structure, and a production process of a porous resin base with the inner wall surfaces of the perforations made conductive, comprising the step of selectively applying a catalyst only to the inner wall surfaces of the perforations to apply a conductive metal to the inner wall surfaces.
摘要:
A production process of a perforated porous resin base, comprising Step 1 of impregnating the porous structure of a porous resin base with a liquid or solution; Step 2 of forming a solid substance from the liquid or solution impregnated; Step 3 of forming a plurality of perforations extending through from the first surface of the porous resin base having the solid substance within the porous structure to the second surface in the porous resin base; and Step 4 of melting or dissolving the solid substance to remove it from the interior of the porous structure, and a production process of a porous resin base with the inner wall surfaces of the perforations made conductive, comprising the step of selectively applying a catalyst only to the inner wall surfaces of the perforations to apply a conductive metal to the inner wall surfaces.