Abstract:
The present disclosure relates to a nitride electronic device and a method for manufacturing the same, and particularly, to a nitride electronic device and a method for manufacturing the same that can implement various types of nitride integrated structures on the same substrate through a regrowth technology (epitaxially lateral over-growth: ELOG) of a semi-insulating gallium nitride (GaN) layer used in a III-nitride semiconductor electronic device including Group III elements such as gallium (Ga), aluminum (Al) and indium (In) and nitrogen.
Abstract:
A cascode switch circuit includes a first transistor, a second transistor, and a protector. A first transistor receives a signal from a first terminal through a first end and transfers the signal to a second end in response to a first control signal. A second transistor delivers the signal that the first transistor transfers to a second terminal in response to a second control signal. A protector is connected between a gate of the first transistor and the second terminal. The first control signal is provided to allow the first transistor to operate in a normally-on state. The second control signal is provided to allow the second transistor to operate in a normally-off state.
Abstract:
Disclosed is a manufacturing method of a high electron mobility transistor. The method includes: forming a source electrode and a drain electrode on a substrate; forming a first insulating film having a first opening on an entire surface of the substrate, the first opening exposing a part of the substrate; forming a second insulating film having a second opening within the first opening, the second opening exposing a part of the substrate; forming a third insulating film having a third opening within the second opening, the third opening exposing a part of the substrate; etching a part of the first insulating film, the second insulating film and the third insulating film so as to expose the source electrode and the drain electrode; and forming a T-gate electrode on a support structure including the first insulating film, the second insulating film and the third insulating film.
Abstract:
A method of manufacturing a semiconductor device includes forming devices including source, drain and gate electrodes on a front surface of a substrate including a bulk silicon, a buried oxide layer, an active silicon, a gallium nitride layer, and an aluminum-gallium nitride layer sequentially stacked, etching a back surface of the substrate to form a via-hole penetrating the substrate and exposing a bottom surface of the source electrode, conformally forming a ground interconnection on the back surface of the substrate having the via-hole, forming a protecting layer on the front surface of the substrate, and cutting the substrate to separate the devices from each other.
Abstract:
A method of manufacturing a semiconductor device includes forming devices including source, drain and gate electrodes on a front surface of a substrate including a bulk silicon, a buried oxide layer, an active silicon, a gallium nitride layer, and an aluminum-gallium nitride layer sequentially stacked, etching a back surface of the substrate to form a via-hole penetrating the substrate and exposing a bottom surface of the source electrode, conformally forming a ground interconnection on the back surface of the substrate having the via-hole, forming a protecting layer on the front surface of the substrate, and cutting the substrate to separate the devices from each other.
Abstract:
Provided are a semiconductor device and a method of fabricating the same. The semiconductor device includes: an active region provided on a substrate; an inlet channel formed as a single cavity buried in one side of the substrate; an outlet channel formed as a single cavity buried in the other side of the substrate; a micro channel array comprising a plurality of micro channels, wherein the plurality of micro channels are formed as a plurality of cavities buried in the substrate, and one end of the micro channel array is connected to a side of the inlet channel and the other end of the micro channel array is connected to a side of the outlet channel; and a micro heat sink array separating the micro channels from one another.
Abstract:
Provided is an electronic device. The electronic device includes a first semiconductor layer and a second semiconductor layer sequentially stacked on a substrate and a source electrode, a gate electrode, and a drain electrode arranged on the second semiconductor layer. The electronic device further includes a field plate which is electrically connected to the source electrode and extends towards the drain electrode, wherein the field plate becomes farther away from the substrate as the field plate becomes closer to the drain electrode.
Abstract:
Provided is a method of manufacturing a nitride semiconductor device. The method includes forming a plurality of electrodes on a growth substrate on which first and second nitride semiconductor layers are sequentially stacked, forming upper metal layers on the plurality of electrodes respectively, removing the growth substrate to expose a lower surface of the first nitride semiconductor layer, and forming a third nitride semiconductor layer and a lower metal layer sequentially on the exposed lower surface of the first nitride semiconductor layer.
Abstract:
Provided is a nitride semiconductor device including: a substrate having through via holes; first and second nitride semiconductor layers sequentially stacked on the substrate; drain electrodes and source electrodes provided on the second nitride semiconductor layer; and an insulating pattern provided on the second nitride semiconductor layer, the insulating pattern having upper via holes provided on the drain electrodes, wherein the through via holes are extended into the first and second nitride semiconductor layers and expose a bottom of each of the source electrodes.
Abstract:
A semiconductor device includes a semiconductor structure including a substrate, a first semiconductor layer on the substrate, and a second semiconductor layer on the first semiconductor layer, a first passivation pattern provided on the semiconductor structure, and first and second conductive patterns provided on the semiconductor structure and spaced from the first passivation pattern.