Abstract:
Provided herein is a semiconductor device including a substrate; an active layer formed on top of the substrate; a protective layer formed on top of the active layer and having a first aperture; a source electrode, driving gate electrode and drain electrode formed on top of the protective layer; and a first additional gate electrode formed on top of the first aperture, wherein an electric field is applied to the active layer, protective layer and driving gate electrode due to a voltage applied to each of the source electrode, drain electrode and driving gate electrode, and the first additional gate electrode is configured to attenuate a size of the electric field applied to at least a portion of the active layer, protective layer and driving gate electrode.
Abstract:
Provided herein is a component package including a matching unit and a matching method thereof, the matching unit including: a substrate; a transmission line formed on the substrate, the transmission line being connected to a terminal of the component package; a bonding wire electrically connecting the transmission line and a central component; and a capacitor unit having a plurality of capacitors electrically connected with the transmission line by wiring connection, wherein an inductance of the matching unit is variable by adjusting a length of the bonding wire, and a capacitance of the matching unit is variable by increasing or reducing the number of capacitors electrically connected to the transmission line, of among the capacitors inside the capacitor unit, by extending or cutting off the wiring connection.
Abstract:
Disclosed are a field effect transistor for high voltage driving including a gate electrode structure in which a gate head extended in a direction of a drain is supported by a field plate embedded under a region of the gate head so as to achieve high voltage driving, and a manufacturing method thereof. Accordingly, the gate head extended in the direction of the drain is supported by the field plate electrically spaced by using an insulating layer, so that it is possible to stably manufacture a gate electrode including the extended gate head, and gate resistance is decreased by the gate head extended in the direction of the drain and an electric field peak value between the gate and the drain is decreased by the gate electrode including the gate head extended in the direction of the drain and the field plate proximate to the gate, thereby achieving an effect in that a breakdown voltage of a device is increased.
Abstract:
A high frequency device includes: a capping layer formed on an epitaxial structure; source and drain electrodes formed on the capping layer; a multilayer insulating pattern formed on entire surfaces of the source and drain electrodes and the capping layer in a step shape; a T-shaped gate passing through the multilayer insulating pattern and the capping layer to be in contact with the epitaxial structure; and a passivation layer formed along entire surfaces of the T-shaped gate and the multilayer insulating pattern.
Abstract:
A field effect transistor is provided. The field effect transistor may include a capping layer on a substrate, a source ohmic electrode and a drain ohmic electrode on the capping layer, a first insulating layer and a second insulating layer stacked on the capping layer to cover the source and drain ohmic electrodes, a Γ-shaped gate electrode including a leg portion and a head portion, the leg portion being connected to the substrate between the source ohmic electrode and the drain ohmic electrode, and the head portion extending from the leg portion to cover a top surface of the second insulating layer, a first planarization layer on the second insulating layer to cover the Γ-shaped gate electrode, and a first electrode on the first planarization layer, the first electrode being connected to the source ohmic electrode or the drain ohmic electrode.
Abstract:
Disclosed is a switch circuit for an ultra-high frequency band, which includes a transistor including a first terminal connected to an input stage, a second terminal connected to an output stage, and a gate terminal, an inductor connected to the transistor in parallel, between the input stage and the output stage, a variable gate driver to apply a gate input voltage to the gate terminal and, an input resistor connected between the variable gate driver and the gate terminal. The variable gate driver adjusts the gate input voltage to be in one of a first voltage level for turning on the transistor and a second voltage level for turning off the transistor. The second voltage level varies depending on a capacitance between the first terminal and the second terminal, when the transistor is in a turn-off state.
Abstract:
Provided herein is a feedback amplifier including an amplifier circuit configured to amplify an input signal input from an input terminal and output the amplified input signal to an output terminal; a feedback circuit configured to apply a feedback resistance value to a signal output to the output terminal, and to control a gain of the amplifier circuit by adjusting the input signal by a bias voltage applied with a feedback resistance value determined; a packet signal sensor configured to generate a fixed resistance control signal for controlling a fixed resistance value included in the feedback resistance value through a comparison between the output from the output terminal with a minimum signal level; and a fixed resistance controller configured to control the fixed resistance value included in the feedback resistance value in response to the fixed resistance control signal.
Abstract:
Disclosed is a manufacturing method of a high electron mobility transistor. The method includes: forming a source electrode and a drain electrode on a substrate; forming a first insulating film having a first opening on an entire surface of the substrate, the first opening exposing a part of the substrate; forming a second insulating film having a second opening within the first opening, the second opening exposing a part of the substrate; forming a third insulating film having a third opening within the second opening, the third opening exposing a part of the substrate; etching a part of the first insulating film, the second insulating film and the third insulating film so as to expose the source electrode and the drain electrode; and forming a T-gate electrode on a support structure including the first insulating film, the second insulating film and the third insulating film.
Abstract:
A package includes a ground plate, a chip mounting plate disposed at a side of the ground plate and having a top surface lower than a top surface of the ground plate, a chip on the chip mounting plate, a first input/output terminal opposite to the chip mounting plate and disposed at another side of the ground plate, and a second input/output terminal opposite to the ground plate and disposed at a side of the chip mounting plate. The first and second input/output terminals are electrically connected to the chip.
Abstract:
Disclosed is a frequency mixer. The frequency mixer includes a first matching circuit that generates a matched local oscillator (LO) signal based on an LO signal, a non-linear circuit that generates a non-linear LO signal based on the matched LO signal, a second matching circuit that generates a matched radio frequency (RF) signal based on an RF signal, a mixing circuit that generates a mixed signal based on a mixing of the non-linear LO signal and the matched RF signal, a third matching circuit that generates an intermediate frequency (IF) signal based on the mixed signal, wherein the non-linear circuit includes a non-linear transistor, a bias transistor, and an internal matching circuit connected in series.