Abstract:
One embodiment relates to an integrated circuit configured to perform dynamic transmit equalization of a bi-directional lane. The integrated circuit including an interface between the physical coding and media access control circuitry, and an equalization control circuit which is external to the physical coding circuitry and which is configured to perform the dynamic transmit equalization using said interface. Another embodiment relates to a transceiver circuit which includes physical coding circuitry and media access control circuitry. The transceiver circuit further includes an interface between the physical coding circuitry and the media access control circuitry and an equalization controller which is external to the physical coding circuitry and which is configured to perform dynamic transmit equalization using said interface. The interface is configured to provide transmit coefficient data in a time-multiplexed signal format from the media access control circuitry to the physical coding circuitry. Other embodiments, aspects, and features are also disclosed.
Abstract:
Systems and methods are disclosed for buffering data using a multi-function, multi-protocol first-in-first-out (FIFO) circuit. For example, a data buffering apparatus is provided that includes a mode selection input and a FIFO circuit that is operative to buffer a data signal between a FIFO circuit input and a FIFO circuit output, wherein the FIFO circuit is configured in an operating mode responsive to the mode selection signal.
Abstract:
Systems and methods are disclosed for buffering data using a multi-function, multi-protocol first-in-first-out (FIFO) circuit. For example, a data buffering apparatus is provided that includes a mode selection input and a FIFO circuit that is operative to buffer a data signal between a FIFO circuit input and a FIFO circuit output, wherein the FIFO circuit is configured in an operating mode responsive to the mode selection signal.
Abstract:
The present disclosure provides physical coding sublayer architectures that enable high-speed serial interfaces capable of operating at data rates ranging from 400 gigabits per second (Gbps) to 1 terabit per second (Tbps). A first embodiment relates to an architecture that provides an aggregated physical coding sublayer (PCS) that provides multiple virtual lanes. A second embodiment relates to an architecture that has a channel-based PCS and provides an aggregation layer above the PCS channels. A third embodiment relates to an architecture that, like the second embodiment, has a channel-based PCS and provides an aggregation layer above the PCS channels. However, each channel-based PCS in the third embodiment provides multiple virtual lanes. Other embodiments, aspects and features are also disclosed.
Abstract:
A configurable multi-protocol transceiver implemented in an integrated circuit (“IC”) includes configurable deskew circuitry. The transceiver has various configurable deskew settings to facilitate effectively adapting transmit and/or receive communications corresponding to a selected one of a plurality of high-speed communication protocols and/or adapt to different implementations in which a deskew block addresses either just static skew or both static and dynamic skew. Configurable circuitry is adapted to control an allowed data depth of a plurality of buffers. Configurable circuitry is adapted to control a deskew character transmit insertion frequency. A programmable state machine is adapted to control read and write pointers in accordance with selectable conditions for achieving an alignment lock condition. Configurable circuitry is adaptable to select between logic and routing resources in the transceiver and logic and routing resources in a core of the IC in which the transceiver is implemented for controlling at least certain deskew operations.
Abstract:
One embodiment relates a method of receiving data from a multi-lane data link. The data is encoded with an FEC code having a block length. The data is FEC encoded at a bus width which is specified within particular constraints. One constraint is that the FEC encoder bus width in bits is an exact multiple of a number of bits per symbol in the data. Another constraint may be that the FEC code block length is an exact multiple of the FEC encoder bus width. Another constraint may be that the FEC encoder bus width is an exact multiple of a number of serial lanes of the multi-lane interface. Other embodiments and features are also disclosed.
Abstract:
One embodiment relates a method of receiving data from a multi-lane data link. The data is encoded with an FEC code having a block length. The data is FEC decoded at a bus width which is specified within particular constraints. One constraint is that the FEC decoder bus width in bits is an exact multiple of a number of bits per symbol in the data. Another constraint may be that the FEC code block length is an exact multiple of the FEC decoder bus width. Another constraint may be that the FEC decoder bus width is an exact multiple of a number of serial lanes of the multi-lane interface. Other embodiments and features are also disclosed.
Abstract:
A method and system for operating a communication circuit that is configurable to support one or more communication standards on a single device. The communication circuit includes a transmitting device that comprises a PCS module operating at a first data rate, and a second PCS module operating at a second data rate. The circuit also includes a plurality of forward error correction (FEC) encoding and decoding modules, each operating at a specified data rate. A first group of FEC encoding and decoding modules is configured to support the first PCS module, and a second group of FEC encoding and decoding modules is configured to support the second PCS module.
Abstract:
A method and system for operating a communication circuit that is configurable to support one or more communication standards on a single device. The communication circuit includes a transmitting device that comprises a PCS module operating at a first data rate, and a second PCS module operating at a second data rate. The circuit also includes a plurality of forward error correction (FEC) encoding and decoding modules, each operating at a specified data rate. A first group of FEC encoding and decoding modules is configured to support the first PCS module, and a second group of FEC encoding and decoding modules is configured to support the second PCS module.