Abstract:
One or more heat pipes are utilized along with a substrate in order to provide heat dissipation through the substrate for heat that can build up at an interface between the substrate and one or more semiconductor chips in a package. In an embodiment the heat pipe may be positioned on a side of the substrate opposite the semiconductor chip and through-substrate vias may be utilized to dissipate heat through the substrate. In an alternative embodiment, the heat pipe may be positioned on a same side of the substrate as the semiconductor chip and may be thermally connected to the one or more semiconductor chips.
Abstract:
Semiconductor devices and methods of manufacture thereof are disclosed. In an embodiment, a method of manufacturing a semiconductor device includes forming a first conductive structure over a workpiece in a first metallization layer, the first conductive structure including a first portion having a first width and a second portion having a second width. The second width is different than the first width. The method includes forming a second conductive structure in a second metallization layer proximate the first metallization layer, and coupling a portion of the second conductive structure to the first portion of the first conductive structure.
Abstract:
An integrated circuit structure includes a lower dielectric layer; an upper dielectric layer over the lower dielectric layer; and a seal ring. The seal ring includes an upper metal line in the upper dielectric layer; a continuous via bar underlying and abutting the upper metal line, wherein the continuous via bar has a width greater than about 70 percent of a width of the upper metal line; a lower metal line in the lower dielectric layer; and a via bar underlying and abutting the lower metal line. The via bar has a width substantially less than a half of a width of the lower metal line.
Abstract:
Provided is a integrated circuit device and a method for fabricating the same. The integrated circuit device includes a semiconductor substrate having a dielectric layer disposed over the semiconductor substrate and a passive element disposed over the dielectric layer. The integrated circuit further includes an isolation matrix structure, underlying the passive element, wherein the isolation matrix structure includes a plurality of trench regions each being formed through the dielectric layer and extending into the semiconductor substrate, the plurality of trench regions further including an insulating material and a void area.
Abstract:
The embodiments described above provide mechanisms for forming metal bumps on metal pads with testing pads on a packaged integrated circuit (IC) chip. A passivation layer is formed to cover the testing pads and possibly portions of metal pads. The passivation layer does not cover surfaces away from the testing pad region and the metal pad region. The limited covering of the testing pads and the portions of the metal pads by the passivation layer reduces interface resistance for a UBM layer formed between the metal pads and the metal bumps. Such reduction of interface resistance leads to the reduction of resistance of the metal bumps.
Abstract:
Interposers for semiconductor devices and methods of manufacture thereof are disclosed. In one embodiment, an interposer includes a substrate, a contact pad disposed on the substrate, and a first through-via in the substrate coupled to the contact pad. A first fuse is coupled to the first through-via. A second through-via in the substrate is coupled to the contact pad, and a second fuse is coupled to the second through-via.
Abstract:
A semiconductor chip includes a semiconductor substrate; a plurality of low-k dielectric layers over the semiconductor substrate; a first passivation layer over the plurality of low-k dielectric layers; and a second passivation layer over the first passivation layer. A first seal ring is adjacent to an edge of the semiconductor chip, wherein the first seal ring has an upper surface substantially level to a bottom surface of the first passivation layer. A second seal ring is adjacent to the first seal ring and on an inner side of the semiconductor chip than the first seal ring. The second seal ring includes a pad ring in the first passivation layer and the second passivation layer. A trench ring includes at least a portion directly over the first seal ring. The trench ring extends from a top surface of the second passivation layer down to at least an interface between the first passivation layer and the second passivation layer.
Abstract:
A device includes a top dielectric layer having a top surface. A metal pillar has a portion over the top surface of the top dielectric layer. A non-wetting layer is formed on a sidewall of the metal pillar, wherein the non-wetting layer is not wettable to the molten solder. A solder region is disposed over and electrically coupled to the metal pillar.
Abstract:
Test structures for performing electrical tests of devices under one or more microbumps are provided. Each test structure includes at least one microbump pad and a test pad. The microbump pad is a part of a metal pad connected to an interconnect for a device. A width of the microbump pad is equal to or less than about 50 μm. The test pad is connected to the at least one microbump pad. The test pad has a size large enough to allow circuit probing of the device. The test pad is another part of the metal pad. A width of the test pad is greater than the at least one microbump pad.
Abstract:
A device includes a substrate having a front surface and a back surface opposite the front surface. A capacitor is formed in the substrate and includes a first capacitor plate; a first insulation layer encircling the first capacitor plate; and a second capacitor plate encircling the first insulation layer. Each of the first capacitor plate, the first insulation layer, and the second capacitor plate extends from the front surface to the back surface of the substrate.