Abstract:
The present invention provides sensors based on micromachined ultrasonic transducer technology. The sensors preferably include a plurality of sensor elements, but may include only one sensor element. Arrays of sensors are also provided. Sensor elements include a functionalized membrane supported over a substrate by a support frame. The functionalized membrane, support frame and substrate together form a vacuum gap. The sensor element is connected to an electrical circuit, which is configured to operate the sensor element at or near an open circuit resonance condition. The mechanical resonance frequency of the functionalized membrane is responsive to binding of an agent to the membrane. Thus, the sensor element also includes a detector, where the detector provides a sensor output responsive to the mechanical resonance frequency of the sensor element.
Abstract:
The invention relates to molecules which can be attached to a substrate (4) and switched between different stable or metastable conformations (18, 19). At least one of these conformations (19) is generated and/or stabilized by the proximity of the substrate (4). The invention further relates to a layered medium comprising such molecules and to a method to switch such molecules in a controlled way. The layered medium is usable as resists for lithographic application, data storage media, and promoter of electron transfer between two media. The method is usable to generate and interrogate patterns in the layered medium.
Abstract:
A field effect transistor and a piezoelectric sensor are positioned between layers of silicon and aluminum to function as a bimetallic electromechanical transducer. The transducer can be used in atomic force microscopy or as an actuator, a chemical sensor, or an oscillator.
Abstract:
The present invention provides optical systems and methods for determining a characteristic of a cell, such as cell type, cellular response to a biochemical event, biological state and the like. The methods typically involve using interferometry to observe membrane properties in a cell and then use this information to determine one or more characteristics of a cell. The methods of the invention are useful for applications such as drug screening as well as diagnostic techniques.
Abstract:
The invention provides an apparatus and a method for defining a pattern on a substrate using a shadow masking technique. Said apparatus comprises a flexible member having a movable portion and at least one aperture. The flexible member is positioned in operation above the substrate thereby acting as a shadow mask. The apparatus further comprises a support for the substrate, distance-controlling means for controlling the distance between said movable portion and said substrate, and an actuator for moving the flexible member and substrate relative to each other parallel to a surface of the substrate. The apparatus further comprises an emission source which emits materials, electrons or light and which aims through the shadow mask at the substrate where the pattern is defined. Such a pattern might be employed in micromechanic, microoptic or microelectronic devices, for example. The described apparatus may be implemented using the AFM principal.
Abstract:
A layer of conformationally adaptive organic molecules are used in epitaxially layered structures to accommodate lattice mismatch between layers at least one of which is of a nonorganic crystalline material. Such a layer on a substrate layer may constitute the epitaxially layered structure or the conformationally adaptive organic molecule layer may be used to accommodate a lattice mismatch between two other layers or the substrate and another layer.
Abstract:
In one aspect, an elastography system includes an elastography device and a position sensing device connected to the elastography device. The elastography device includes a housing, a probing element removably attached to the housing, and a force sensor attached within the housing, where the force sensor is connected to the probing element. In another aspect, an elastography) method includes inserting a probing element into a material, producing, by a force sensor connected to a base of the probing element a signal indicative of a force applied to the probing element upon insertion of the probing element into the material, and based on the signal, deriving a mapping of spatial variations of a material property within the material.
Abstract:
The present invention provides methods of detecting a nucleic acid analyte in a sample. The present invention further provides a method for assigning a profile of a feature to a nucleic acid. The present invention further provides a computer program product for use in a subject method. The present invention further provides a system for detecting a nucleic acid in a sample; and a system for assigning a profile of a feature to a nucleic acid. The present invention further provides a method for immobilizing a nucleic acid onto an insoluble support; and further provides insoluble support having nucleic acid(s) immobilized thereon. The present invention further provides a method of diagnosing a disorder or condition in an individual, where the method involves use of a subject method for detecting a nucleic acid analyte.
Abstract:
The present invention provides optical systems and methods for determining a characteristic of a cell, such as cell type, cellular response to a biochemical event, biological state and the like. The methods typically involve using interferometry to observe membrane properties in a cell and then use this information to determine one or more characteristics of a cell. The methods of the invention are useful for applications such as drug screening as well as diagnostic techniques.
Abstract:
An Auger electron microscope is equipped with a field-emission tip maintained at an essentially constant distance above the surface of the specimen. The tip may consist of a tungsten (100) whisker having a radius of .about.50 nm at the apex, the working distance being on the order of 1 mm. Auger electrons emitted from the surface of the specimen are collected by an electron energy analyzer for conventional processing. Mutual scanning displacement between the tip and specimen is obtained through use of an xyz-drive module, which is also responsible for adjusting the working distance of the tip. The entire microscope setup is mounted on vibration damping means and may be inserted into a vacuum system by means of an appropriate flange, if desired.