Abstract:
An atomic force microscope based apparatus for examining a sample includes a cantilever having a cantilever arm and a probe tip where the probe tip is offset laterally from a longitudinal axis of torsion of the cantilever arm, an oscillator that drives the cantilever into oscillation in a flexural mode to cause the probe tip to repeatedly interact with the sample where the tip-sample interaction of the laterally offset probe tip excites torsional motion of the cantilever, and a detection system that detects torsional motion of the cantilever in response to the tip-sample interaction.
Abstract:
A probe for a scanning probe microscope includes a cantilever having a length defined between a free end and a base end. The base end is connected to a support. The free end includes a sharp tip, and is free to oscillate at a selected frequency. The probe also includes a knife-edge structure that is positioned adjacent to the cantilever and perpendicular to the length of the cantilever. The knife edge inhibits the cantilever from vibrating at a first-order resonant frequency of the cantilever, and instead encourages the cantilever to vibrate at third or higher order resonant frequencies.
Abstract:
A cantilever for a scanning probe microscope (SPM) includes a piezoelectric element in a thicker, less flexible section near the fixed base of the cantilever and a piezoresistor in a thinner, more flexible section near the free end of the cantilever. When the SPM operates in the constant force mode, the piezoelectric element is used to control the tip-sample separation. Since the resonant frequency of the piezoelectric element is substantially higher than that of conventional piezoelectric tube scanners, much higher scan rates can be achieved. When the SPM operates in the dynamic or intermittent contact mode, a superimposed AD-DC signal is applied to the piezoelectric element, and the latter is used to vibrate the cantilever as well as to control the tip-sample spacing. In another embodiment the cantilever is supported on a knife edge and vibrates at a third or higher order resonant frequency.
Abstract:
A lithography system includes a plurality of cantilevers, preferably formed in a silicon wafer. Each cantilever includes a tip located near the free end of the cantilever and an electrical conduction path which extends along the length of the cantilever to the tip. A switch is included in the conduction path to control the voltage at the tip of the cantilever.The array of such cantilevers is positioned adjacent a wafer which is to be patterned, in the manner of an atomic force microscope operating in either the contact or noncontact mode. The cantilever array is scanned over the wafer, preferably in a raster pattern, and the individual switches are operated so as to control an electric current or electric field at the tip of each cantilever. The electric current or field is used to write a pattern on a layer of resist coating the wafer or on the surface of the wafer itself. Alternatively, the lithographic pattern may be formed by using the tip to scribe lines in a thin layer of soft material coating the wafer.
Abstract:
A fluid application device and method transfers fluid to a substrate from a fluid applicator having a plurality of ejectors. The substrate is partitioned into a matrix of cells covering the substrate and each cell includes a plurality of fluid-receiving sites. Each of the ejectors on the fluid applicator is associated with a respective one of the cells on the substrate. As fluid is ejected from the ejectors of the fluid applicator toward the substrate, the fluid applicator and substrate are moved relative to each other to cause the ejectors to scan back and forth across all of the fluid-receiving sites of each cell of the substrate. In a typical application, the fluid applicator is a printhead that ejects ink droplets toward a sheet, the printhead being approximately as large as the sheet.
Abstract:
A material deposition head having lithographically defined ejector units. Beneficially, each ejector unit includes a plurality of lithographically defined droplet ejectors. Furthermore, methods of fabricating such lithographically defined material deposition heads are also described.
Abstract:
An acoustic microscope assembly for atomic level inspection of a target object includes a cantilever arm with a sharp tip on its lower surface and a zinc oxide piezoelectric thin film on its upper surface. High frequency excitation signals, having a frequency of at least 50 Megahertz, are applied to the piezoelectric thin film so as to generate high frequency acoustic signals that are transmitted through the sharp tip so as to impact on a target object. The assembly can either receive acoustic signals reflected by the target object, or it can receive acoustic signals that have propagated through the target object. One method of using this assembly is to apply a continuous wave signal to the piezoelectric thin film while scanning the target object, and measuring characteristics of the target object at various positions thereof by measuring the resonant frequency of the transmitted high frequency acoustic signals. Other methods include pulsed operation, and combining acoustic measurements with atomic force measurements and/or tunneling current measurements to characterize a target object. The acoustic microscope assembly can also be used for storing information on a substrate, by deforming the substrate at selected positions, and for reading such stored information by determining which positions on a substrate have been deformed.
Abstract:
A traveling wave droplet generator having a drop-on-demand mode of operation. An acoustic mechanism excites a line of peaks of ink just below threshold for ink drop ejection in the orifices of an ink chamber. Electrostatic means raises particular peaks above the threshold using an excitation that is synchronous with the acoustic wave, which gives rise to parametric coupling which enhances the efficiency of the ejection. The electrostatic field can be selectively established at each of the orifices by a conventional addressing mechanism.
Abstract:
A nitride cantilever is formed with an integral conical silicon tip at the free end thereof. A top layer of silicon dioxide is patterned into a tip mask on a doped or epitaxial silicon layer in a silicon substrate. Photoresist is spun on the silicon substrate and patterned and the silicon is etched to define a cantilever pattern in the substrate with the tip mask positioned to be near the free end of a nitride cantilever to be subsequently formed. A bottom layer of silicon dioxide is formed on the silicon substrate and then patterned and etched to define a masking aperture on the bottom silicon dioxide layer. The bottom of the silicon substrate is anisotropically etched through the masking aperture and the etch stops at the doped silicon layer. Alternatively, electrochemical etching is done by applying an electric potential across the P-N junction between the doped silicon layer and the appropriately-doped substrate. This releases the free end of the doped silicon layer from the silicon substrate. The anisotropic etch preferentially etches all of the crystal planes of the silicon substrate except the (111) planes to leave a silicon base from which extends the silicon surface layer as a cantilever. A nitride layer is then formed on the silicon substrate and dry etched from the top surface of the doped silicon surface layer to form a nitride cantilever on the bottom of the silicon substrate. The doped silicon layer is etched away while the tip mask helps to form a pointed silicon tip near the free end of the nitride cantilever.A microfabricated cantilever includes a (100) silicon base having a (111) oblique side. A nitride layer is formed over the (111) oblique side of the silicon base and extends outwardly from the top surface of the silicon base to form a nitride cantilever having one end fixed to the silicon base and having a free end. On the free end is fixed a single-crystal sharp conical silicon tip which extends upwardly.
Abstract:
To facilitate the use of hot melt inks in acoustic ink printers of the type having a printhead including one or more acoustic droplet ejectors for supplying focused acoustic beams, such a printer comprises a carrier for transporting a generally uniformly thick film of hot melt ink across its printhead, together with a heating means for liquefying the ink as it nears the printhead. The droplet ejector or ejectors are acoustically coupled to the ink via the carrier, and their output focal plane is essentially coplanar with the free surface of the liquefied ink, thereby enabling them to eject individual droplets of ink therefrom on command. The ink, on the other hand, is moved across the printhead at a sufficiently high rate to maintain the free surface which it presents to the printhead at a substantially constant level. A variety of carriers may be employed, including thin plastic and metallic belts and webs, and the free surface of the ink may be completely exposed or it may be partially covered by a mesh or perforated layer. A separate heating element may be provided for liquefying the ink, or the lower surface of the carrier may be coated with a thin layer of electrically resistive material for liquefying the ink by localized resistive heating.