摘要:
An ultrasound sub-surface probe microscopy device (1) is provided comprising a stage (10), a signal generator (20), a scanning head (30), a signal processor (50) and a scanning mechanism (16). In use, the stage (10) carries a sample (11) and the scanning mechanism (16) provides for a relative displacement between the sample (11) and the scanning head (30), along the surface of the sample. The scanning head (30) comprises an actuator (31) configured to generate in response to a drive signal (Sdr) from the signal generator (20) an ultrasound acoustic input signal (Iac). The generated ultrasound acoustic input signal (Iac) has at least one acoustic input signal component (Iac1) with a first angular frequency (ω1). The scanning head (30) further comprises a tip (32) to transmit the acoustic input signal (Iac) through a tip-sample interface (12) as an acoustic wave (Wac) into the sample. Due to a non-linear interaction in the tip-sample interface (12) at least one up mixed acoustic signal component (Wac2) in said acoustic wave that has a second angular frequency (ω2) higher than the first angular frequency (ω1) Contrary to known approaches, the sensor signal (Ssense) provided by the sensor facility is indicative for a contribution (W′ac2) of the at least one up mixed acoustic signal component in reflections (W′ac) of the acoustic wave within the sample (11). Therewith a relatively high resolution can be achieved with which subsurface features can be detected.
摘要:
An optical device includes a first axicon lens to which collimated light is incident and which is configured to form diverging ring-shaped light; a lens to which the ring-shaped light formed by the first axicon lens is incident and which is configured to form ring-shaped collimated light; and a condensing mirror that is configured to condense the ring-shaped collimated light formed by the lens. A photoacoustic microscope includes the optical device described above and a detector that is configured to detect an acoustic wave caused by light condensed by the condensing mirror.
摘要:
The present invention relates to a heterodyne scanning probe microscopy method for imaging structures on or below the surface of a sample, the method including applying, using a transducer, an acoustic input signal to the sample sensing, using a probe including a probe tip in contact with the surface, an acoustic output signal, wherein the acoustic output signal is representative of acoustic surface waves induced by the acoustic input signal wherein the acoustic input signal comprises at least a first signal component having a frequency above 1 gigahertz, and wherein for detecting of the acoustic output signal the method comprises a step of applying a further acoustic input signal to at least one of the probe or the sample for obtaining a mixed acoustic signal, the further acoustic input signal including at least a second signal component having a frequency above 1 gigahertz, wherein the mixed acoustic signal comprises a third signal component having a frequency equal to a difference between the first frequency and the second frequency, wherein the frequency of the third signal component is below 1 gigahertz.
摘要:
An acoustic microscope system is described that includes a container for holding a medium with an object to be measured. Compressional waves are generated by a probe into the medium. The compressional waves travel along an acoustic axis to interact with the object. Shear waves are generated by a shear wave source into the medium. The shear waves travel along a secondary axis which intersects with the acoustic axis at the object with a non-zero angle. The shear waves are configured to cause shear wave oscillations directed transverse to the secondary axis and at least partially directed along the acoustic axis. A measurement of the object is determined based on the compressional waves having interacted with the object as a function of the generation of the shear waves.
摘要:
A system and method for using a microscope to aurally observe a specimen in a fluid is provided. In one embodiment of the present invention, the microscope is modified to include a first beam splitter, splitting a visual of the specimen magnified by the objective lens. A first beam is then provided to an audio frequency modulation sensing (AFMS) device, whose function is to sense photoacoustic modulation of the specimen and to extract aural data, allowing sound energy to be observed by a user (e.g., displayed on screen, played on a speaker, etc.). The second beam is provided to a second beam splitter, allowing visuals to be provided to the eyepiece and to at least one other sensor, where a second visual of the specimen is captured. The second visual can then be displayed on a screen in time synchronization with aural data provided by the AFMS device.
摘要:
A method includes forming a flip-chip module including a chip connected to a substrate with a layer of underfill material adhered to the chip and the substrate; sensing chip-packaging interaction failure in the underfilled flip-chip module in situ; reporting in-situ chip-packaging interaction failure to a device in real-time; and imaging the chip-packaging interaction failure with an indirect scanning acoustic microscope.
摘要:
A photoacoustic microscope includes: a light source which generates pulse light; a focusing optical system which focuses the pulse light emitted from the light source and irradiate a sample with the focused pulse light; a photoacoustic signal detection unit which detects an acoustic signal generated from the sample through irradiation of the pulse light; an image signal formation unit which forms an image signal of the sample based on the acoustic signal; an information unit having information representing a relation between intensity of the pulse light entering the sample and intensity of the acoustic signal generated from the sample; and a pulse light intensity changing unit which changes intensity of the pulse light from the light source based on the information.
摘要:
A method and device for evaluating inhomogeneous deformations in a first wafer bonded by molecular adhesion to a second wafer. This evaluation method includes the steps of making at least one reading of a plurality of measurement points, the reading corresponding to a surface profile of the first wafer along a predefined direction and over a predefined length, computing a second derivative from the measurement points of the surface profile and evaluating a level of inhomogeneous deformations in the first wafer according to the second derivative.
摘要:
Advanced interconnect technologies such as Through Silicon Vias (TSVs) have become an integral part of 3-D integration. Methods and systems and provided for laser-based acoustic techniques in which a short laser pulse generates broadband acoustic waves that propagate in the TSV structure. An optical interferometer detects the surface displacement caused by the acoustic waves reflecting within the structure as well as other acoustic waves traveling near the surface that has information about the structure dimensions and irregularities, such as voids. Features of voids, such as their location, are also identified based on the characteristics of the acoustic wave as it propagates through the via. Measurements typically take few seconds per site and can be easily adopted for in-line process monitoring.
摘要:
A simulated biological material for photoacoustic diagnostic apparatus contains a polyol or a cured material produced from a polyol and a polyisocyanate, and titanium oxide fine particles in the polyol or the cured material. The titanium oxide fine particles are surface-treated with a polysiloxane having a Si—H partial structure.