Abstract:
The present invention provides a substrate structure, a semiconductor device, and a manufacturing method thereof. The substrate structure comprises: a semiconductor substrate; and a first isolation region, wherein the first isolation region comprises: a first trench extending through the semiconductor substrate; and a first dielectric layer filling the first trench. Due to the isolation region extending through the substrate, it is possible to make device structures on both surfaces of the substrate, so as to increase the utilization of the substrate and the integration degree of the devices.
Abstract:
A semiconductor device structure, a method for manufacturing the same, and a method for manufacturing a semiconductor fin are disclosed. In one embodiment, the method for manufacturing the semiconductor device structure comprises: forming a fin in a first direction on a semiconductor substrate; forming a gate line in a second direction, the second direction crossing the first direction on the semiconductor substrate, and the gate line intersecting the fin with a gate dielectric layer sandwiched between the gate line and the fin; forming a dielectric spacer surrounding the gate line; and performing inter-device electrical isolation at a predetermined position, wherein isolated portions of the gate line form independent gate electrodes of respective devices.
Abstract:
The present invention relates to substrates for ICs and method for forming the same. The method comprises the steps of: forming a hard mask layer on the bulk silicon material; etching the hard mask layer and the bulk silicon material to form a first part for shallow trench isolation of at least one trench; forming a dielectric film on the sidewall of the at least one trench; further etching the bulk silicon material to deepen the at least one trench so as to form a second part of the at least one trench; completely oxidizing or nitridizing parts of the bulk silicon material which are between the second parts of the trenches, and parts of the bulk silicon material which are between the second parts of the trenches and side surfaces of the bulk silicon substrate; filling dielectric materials in the first and second parts of the at least one trench; and removing the hard mask layer.
Abstract:
A semiconductor device, a formation method thereof, and a package structure are provided. The semiconductor device comprises: a semiconductor substrate in which a metal-oxide-semiconductor field-effect transistor (MOSFET) is formed; a dielectric layer, provided on the semiconductor substrate and covering the MOSFET, wherein a plurality of interconnection structures are formed in the dielectric layer; and at least one heat dissipation path, embedded in the dielectric layer between the interconnection structures, for liquid or gas to circulate in the heat dissipation path, wherein openings of the heat dissipation path are exposed on the surface of the dielectric layer. The present invention can improve heat dissipation efficiency, and prevent chips from overheating.
Abstract:
A semiconductor device and a method for manufacturing a local interconnect structure for a semiconductor device is provided. The method includes forming removable sacrificial sidewall spacers between sidewall spacers and outer sidewall spacers on two sides of a gate on a semiconductor substrate, and forming contact through-holes at source/drain regions in the local interconnect structure between the sidewall spacer and the outer sidewall spacer on the same side of the gate immediately after removing the sacrificial sidewall spacers. Once the source/drain through-holes are filled with a conductive material to form contact vias, the height of the contact vias shall be same as the height of the gate. The contact through-holes, which establish the electrical connection between a subsequent first layer of metal wiring and the source/drain regions or the gate region at a lower level in the local interconnect structure, shall be made in the same depth.
Abstract:
The present invention discloses a method for manufacturing a semiconductor device, comprising: forming a gate stacked structure on a silicic substrate; depositing a Nickel-based metal layer on the substrate and the gate stacked structure; performing a first annealing so that the silicon in the substrate reacts with the Nickel-based metal layer to form a Ni-rich phase of metal silicide; performing an ion implantation by implanting doping ions into the Ni-rich phase of metal silicide; performing a second annealing so that the Ni-rich phase of metal to silicide is transformed into a Nickel-based metal silicide source/drain, and meanwhile, forming a segregation region of the doping ions at an interface between the Nickel-based metal silicide source/drain and the substrate. The method for manufacturing the semiconductor device according to the present invention performs the annealing after implanting the doping ions into the Ni-rich phase of metal silicide, thereby improving the solid solubility of the doping ions and forming a segregation region of highly concentrated doping ions, thus the SBH between the Nickel-based metal silicide and the silicon channel is effectively reduced, and the driving capability of the device is improved.
Abstract:
The invention relates to a semiconductor device and a method for manufacturing such a semiconductor device. A semiconductor device according to an embodiment of the invention comprises: a substrate which comprises a base layer, an insulating layer on the base layer, and a semiconductor layer on the insulating layer; and a first transistor and a second transistor formed on the substrate, the first and second transistors being isolated from each other by a trench isolation structure formed in the substrate. Wherein at least a part of the base layer under at least one of the first and second transistors is strained, and the strained part of the base layer is adjacent to the insulating layer. The semiconductor device according to the invention increases the speed of the device and thus improves the performance of the device.
Abstract:
The invention discloses a semiconductor structure comprising: a substrate, a conductor layer, and a dielectric layer surrounding the conductor layer on the substrate; a first insulating layer covering both of the conductor layer and the dielectric layer; a gate conductor layer formed on the first insulating layer, and a dielectric layer surrounding the gate conductor layer; and a second insulating layer covering both of the gate conductor layer and the dielectric layer surrounding the gate conductor layer; wherein a through hole filled with a semiconductor material penetrates through the gate conductor layer perpendicularly, the bottom of the through hole stops on the conductor layer, and a first conductor plug serving as a drain/source electrode is provided on the top of the through hole; and a second conductor plug serving as a source/drain electrode electrically contacts the conductor layer, and a third conductor plug serving as a gate electrode electrically contacts the gate conductor layer.
Abstract:
The present invention provides a semiconductor device structure and a method for manufacturing the same. The method comprises: providing a semiconductor substrate, forming a first insulating layer on the surface of the semiconductor substrate; forming a shallow trench isolation embedded in the first insulating layer and the semiconductor substrate; forming a stripe-type trench embedded in the first insulating layer and the semiconductor substrate; forming a channel region in the trench; forming a gate stack line on the channel region and source/drain regions on opposite sides of the channel region. Embodiments of the present invention are applicable to manufacture of semiconductor devices.
Abstract:
Semiconductor devices and methods for manufacturing the same are disclosed. In one embodiment, the method comprises: sequentially forming a sacrificial layer and a semiconductor layer on a substrate; forming a first cover layer on the semiconductor layer; forming an opening extending into the substrate with the first cover layer as a mask; selectively removing at least a portion of the sacrificial layer through the opening, and filling an insulating material in a gap due to removal of the sacrificial layer; forming one of source and drain regions in the opening; forming a second cover layer on the substrate; forming the other of the source and drain regions with the second cover layer as a mask; removing a portion of the second cover layer; and forming a gate dielectric layer, and forming a gate conductor in the form of spacer on a sidewall of a remaining portion of the second cover layer.