Abstract:
In a capacitor device of the present invention includes a substrate, a plurality of lower electrodes formed on the substrate, a plurality of dielectric films formed on a plurality of lower electrodes respectively in a state that the dielectric films are separated mutually, and upper electrodes formed on a plurality of dielectric films respectively, a plurality of capacitors each composed of the lower electrode, the dielectric film, and the upper electrode are arranged on the substrate respectively, and each of the dielectric films in a plurality of capacitors has a different film thickness.
Abstract:
A multi-layer printed circuit board includes an insulation substrate; a surface conductive pattern disposed on a surface of the insulation substrate; and an inner conductive pattern embedded in the insulation substrate. The surface conductive pattern has a surface roughness on an insulation substrate side, the surface roughness of the surface conductive pattern being larger than that of the inner conductive pattern.
Abstract:
A method of forming conductive structures on the contact pads of a substrate, such as a semiconductor die or a printed circuit board. A solder mask is secured to an active surface of the substrate. Apertures through the solder mask are aligned with contact pads on the substrate. The apertures may be preformed or formed after a layer of the material of which the solder mask is comprised has been disposed on the substrate. Conductive material is disposed in and shaped by the apertures of the solder mask to form conductive structures in communication with the contact pads exposed to the apertures. Sides of the conductive structures are exposed through the solder mask, either by removing the solder mask from the substrate or by reducing the thickness of the solder mask. The present invention also includes semiconductor devices formed during different stages of the method of the present invention.
Abstract:
Disclosed are tapered dielectric and conductor structures which provide controlled impedance interconnection while signal conductor lines transition from finer pitches to coarser pitches thereby obviating electrical discontinuities generally associated with changes of circuit contact pitch. Also disclosed are methods for the construction of the devices and applications therefore.
Abstract:
A multilayer ceramic capacitor (10) having reduced inductance which is separated into a first layer body (11) and a second layer body (12). The first layer body (11) and the second layer body (12) are formed by alternately layering inner electrodes (inner electrode 13a, inner electrode 13b) so as to face each other and sandwich ceramic layers (14). The ceramic layers (14) of the second layer body (12) are thicker than the ceramic layers (14) of the first layer body (11), so as to compensate for electrode height difference. Moreover, in the second layer body (12), the inner electrodes (13b) are electrically connected by via electrode (15b) so that the part of the via electrode (15b) extending without connection to an inner electrode (13b) is shortened.
Abstract:
A tape drive comprises a magnetic head and a flexible circuit coupled to the magnetic head. The flexible circuit comprises a rolling loop and a double layer portion that extends at least partially through the rolling loop.
Abstract:
Fundamental interconnect systems for connecting high-speed electronics elements are provided. Interconnect system has the means, which could reduce the microwave loss by reducing the effective dielectric loss and dielectric constant of the interconnect system, and increase the bandwidth of the interconnects and also reduce the signal propagation delay, respectively. Ideally, the speed of the electrical signal on the signal line can be reached to speed of the light in the air, and the bandwidth can be reached to closer to the optical fiber. The interconnect systems consists of the signal line, dielectric system with opened trench or slot filled up with the air or lower dielectric loss material, and the ground plan. The signal line proposed in this invention could be made any type of signal line configuration for example, microstripline, strip line or coplanar line. The signal line can also be made as single ended or differential pairs of any configurations. The interconnect system based on the fundamental techniques provided in this invention, can be used for on-chip interconnects where the high speed electronics devices are connected by the signal line laid on the oxide or dielectric material. Again, the interconnect system based on the fundamental techniques provided in this invention, can also be used for off-chip interconnects (chip-to-chip interconnects), where the whole portion or portion of the PCB on which high speed chips are to be connected, are having the dielectric system with opened trench or slot to reduce the microwave loss. High scale chip-to-chip interconnection using of the multilayered PCB is possible. The fundamental techniques provided in this invention can also be used for high-speed connectors and high-speed cables. The main advantages of this invention are to make high speed interconnects systems for on-chip and off-chip interconnects. More over, this fundamental technology is also used for the high sped die package, high speed connector, and high speed cables where conventional manufacturing technology can be used and yet to increase the bandwidth of the interconnects.
Abstract:
A method for connecting electrical components is provided. The method includes electrically connecting electrodes on two separate substrates with an anisotropic electroconductive adhesive layer. The thickness of the electroconductive adhesive layer prior to connection (X) is given by: 0.5×{(A1C1+A2C2)/(B+C)}≦X≦2×{(A1C1+A2C2)/(B+C)} where: A1 is a height of electrodes on a first substrate, B1 is a width of the electrodes on the first substrate and C1 is a width of an interelectrode space between the electrodes on the first substrate; A2 is a height of electrodes on a second substrate, B2 is a width of the electrodes on the second substrate and C2 is a width of an interelectrode space between the electrodes on the second substrate; and B+C=B1+C1=B2+C2.
Abstract translation:提供了一种用于连接电气部件的方法。 该方法包括在两个单独的基板上用各向异性导电粘合剂层电连接电极。 连接前的导电粘合剂层的厚度(X)由下式给出:其中:A 1是第一衬底上的电极的高度,B 1是第一衬底上电极的宽度,C < 1>是第一基板上的电极之间的电极间空间的宽度; A 2是第二基板上的电极的高度,B 2是第二基板上的电极的宽度,C 2是第二基板上的电极之间的电极间空间的宽度; B + C = B 1 + C 1 = B 2 + C 2。
Abstract:
A printed circuit board having a permanent solder mask includes a substrate made of a glassfiber reinforced epoxy resin material. The top and bottom surfaces of the substrate are disposed thereon a conductive pattern respectively. An epoxy resin solder mask is coated on each surface of the substrate in such a way that the conductive pattern is divided into a sheltered portion covered by the solder mask and an unsheltered portion exposed outside. The solder mask also has an even and smooth outer surface with a micro-roughness ranging between 0.5 &mgr;m˜10 &mgr;m and an optimum thickness ranging between 2 &mgr;m˜200 &mgr;m.
Abstract:
In a green laminate body including a plurality of base green layers and a plurality of constraining green layers for forming a monolithic ceramic substrate by using a non-shrinking process, when the thicknesses of the base green layers differ from each other, a thicker base green layer shrinks largely during sintering, and hence, the resulting monolithic ceramic substrate may warp in some cases. In order to solve this problem, the constraining green layers, which are in contact with the main surfaces of the individual base green layers, have different thicknesses so that a relatively thicker constraining green layer is in contact with a relatively thicker base green layer, and a relatively thinner constraining green layer is in contact with a relatively thinner base green.