摘要:
It is an object to drive a semiconductor device at high speed or to improve the reliability of the semiconductor device. In a method for manufacturing the semiconductor device, in which a gate electrode is formed over a substrate with an insulating property, a gate insulating film is formed over the gate electrode, and an oxide semiconductor film is formed over the gate insulating film, the gate insulating film is formed by deposition treatment using high-density plasma. Accordingly, dangling bonds in the gate insulating film are reduced and the quality of the interface between the gate insulating film and the oxide semiconductor is improved.
摘要:
Vertically oriented nanowire transistors including semiconductor layers or gate electrodes having compositions that vary over a length of the transistor. In embodiments, transistor channel regions are compositionally graded, or layered along a length of the channel to induce strain, and/or include a high mobility injection layer. In embodiments, a gate electrode stack including a plurality of gate electrode materials is deposited to modulate the gate electrode work function along the gate length.
摘要:
A method of fabricating a nitride-based transistor includes sequentially forming a first nitride-based semiconductor layer doped with first type dopant, a second nitride-based semiconductor layer doped with at least one of a second type dopant, and a third nitride-based semiconductor layer doped with at least one of the first type dopants. A first trench is formed to penetrate the third and second nitride-based semiconductor layers and to extend into the first nitride-based semiconductor layer. A fourth nitride-based semiconductor layer doped with the first type dopants is formed to fill the first trench. A second trench is formed in the fourth nitride-based semiconductor layer. A gate electrode is formed in the second trench. A source electrode is formed to be electrically connected to at least one of the third and fourth nitride-based semiconductor layers, and a drain electrode is formed to be electrically connected to the first nitride-based semiconductor layer.
摘要:
Implementations of the present disclosure generally relate to methods and apparatus for forming a film on a substrate. More particularly, implementations of the present disclosure relate to methods and apparatus for heteroepitaxial growth of crystalline films. In one implementation, a method of heteroepitaxial deposition of a strain relaxed buffer (SRB) layer on a substrate is provided. The method comprises epitaxially depositing a buffer layer over a dissimilar substrate, rapidly heating the buffer layer to relax the buffer layer, rapidly cooling the buffer layer and determining whether the buffer layer has achieved a desired thickness.
摘要:
GaN based nanowires are used to grow high quality, discreet base elements with c-plane top surface for fabrication of various semiconductor devices, such as diodes and transistors for power electronics.
摘要:
A method for making one or more nanostructures is disclosed, the method comprising: depositing a conducting layer on an upper surface of a substrate; depositing a patterned layer of catalyst on the conducting layer; growing the one or more nanostructures on the layer of catalyst; and selectively removing the conducting layer between and around the one or more nanostructures. A device is also disclosed, comprising a substrate, wherein the substrate comprises one or more exposed metal islands separated by one or more insulating areas; a conducting helplayer disposed on the substrate covering at least some of the one or more exposed metal islands or insulating areas; a catalyst layer disposed on the conducting helplayer; and one or more nanostructures disposed on the catalyst layer.
摘要:
To improve productivity of a transistor that includes an oxide semiconductor and has good electrical characteristics. In a top-gate transistor including a gate insulating film and a gate electrode over an oxide semiconductor film, a metal film is formed over the oxide semiconductor film, oxygen is added to the metal film to form a metal oxide film, and the metal oxide film is used as a gate insulating film. After an oxide insulating film is formed over the oxide semiconductor film, a metal film may be formed over the oxide insulating film. Oxygen is added to the metal film to form a metal oxide film and added also to the oxide semiconductor film or the oxide insulating film.
摘要:
The invention relates to a process for the production of electrically semiconducting or conducting metal-oxide layers having improved conductivity which is suitable, in particular, for the production of flexible thin-film transistors, to metal-oxide layers produced thereby, and to the use thereof for the production of electronic components.
摘要:
Provided is a compound semiconductor deposition method of adjusting the luminous wavelength of a compound semiconductor of a ternary or higher system in a nanometer order in depositing the compound semiconductor on a substrate. In the compound semiconductor deposition method of depositing a compound semiconductor of a ternary or higher system on a substrate, propagation light of a smaller energy than a desired ideal excitation energy for the compound semiconductor is irradiated onto the substrate 13 while depositing the compound semiconductor on the substrate 13, near-field light is generated based on the irradiated propagation light from fine particles of the compound semiconductor deposited on the substrate 13, new vibrational levels for the compound semiconductor are formed in multiple stages based on the generated near-field light, and a component in the compound semiconductor corresponding to the excitation energy is excited with the propagation light through a vibrational level, among the new vibrational levels, which has an excitation energy equal to or smaller than the energy of the propagation light is excited to desorb the component.
摘要:
A method of manufacturing a semiconductor device according to one aspect of the present invention includes a step of forming a first layer of InAlN, a step of forming a second layer of InAlGaN on the first layer under a growth temperature higher than that of the first layer, and a step of forming a third layer of GaN, AlGaN or InGaN under a growth temperature higher than that of the first layer.