Abstract:
The present invention provides a plastic package structure for a communication component. The plastic package structure comprises a leadframe and a die. Two sides of a die pad of the leadframe have two protruding portions. The die is glued on the protruding portions of the die pad to form a hollow region between the die and the die pad. After the operation of soldering, an insulating seal is used to seal the other two sides of the die and the die pad to form a closed cavity on the circuit face of the die. An encapsulation is then used to sheathe all the above parts. Thereby, a plastic package for a communication component provided by the present invention has low cost and high production speed, and is suitable to mass production.
Abstract:
A method for bonding inner leads of lead frame to substrate includes the steps of: (a) providing a substrate, the substrate having a plurality of connection pads formed on the electrical bonding surface of the substrate; (b) providing a lead frame with a dam tape adhered on of the inner leads of the lead frame; (c) thermally compressing the inner leads of lead frame onto the substrate, wherein a solder material is formed between the inner end and the corresponding connection pad of the substrate and the solder material is limited by the dam tape during inner lead bonding, so that there is stable electrical and mechanical connection between inner leads and the substrate.
Abstract:
A semiconductor device assembly including a semiconductor device having a plurality of bond pads on the active surface thereof and a lead frame having a portion of the plurality of lead fingers of the lead frame located below the semiconductor device in a substantially horizontal plane and another portion of the plurality of lead fingers of the lead frame located substantially in the same horizontal plane as the active surface of the semiconductor device. Both pluralities of lead fingers of the lead frame having their ends being located substantially adjacent the peripheral sides of the semiconductor device, rather than at the ends thereof.
Abstract:
A dielectric substrate for laser working contains a substance having a size of a half to 10 times of a laser light wavelength and different in refractive index from a material of the dielectric substrate. This substance enhances the absorption of a laser beam. Due to this, the energy loss in laser beam is transformed into the heat of fusion to form a penetration hole, thereby forming a well-formed penetration hole. The substance different in refractive index from the dielectric substrate material uses bubbles when the dielectric substrate is a quartz glass substrate, and a glass bead or fiber when it is a resin substrate.
Abstract:
A carrier for a semiconductor die package is disclosed. In one embodiment, the carrier includes a metal layer and a plurality of bumps formed in the metal layer. The bumps can be formed by stamping.
Abstract:
The present invention provides a structure of a stacked-type multi-chip stack package of the leadframe. The shape of the stair-like inner leads can be regulated for the high and the amount of stacked chips and to match different bonding technology. The process for forming the present structure can be easily performed by visible equipment and materials, and the present structure can raise the reliability of bonding process. The present invention can stack multi-chip (more than two).
Abstract:
A structure of a cross guard ring along the edge of a semiconductor chip is disclosed. A first guard ring, a second guard ring and a third guard ring are formed along the edge of a semiconductor chip. Each guard ring comprises several rectangle shaped vias which are positioned along the edge of the chip structure, wherein each rectangle via is separated from an adjacent rectangle via by a gap. Further, each rectangle via of the second guard ring is positioned opposite the said gap of the first guard ring and are crossed over and have some overlay with rectangle vias of the first guard ring which are separated by the said gap as shown in FIG. 2. Similarly the third guard ring is positioned with respect to the second guard ring.
Abstract:
A method of making a microelectronic package having an array of resilient leads includes providing a first element having a plurality of conductive leads at a first surface thereof, the conductive leads having terminal ends permanently attached to the first element and tip ends remote from the terminal ends, the tip ends being movable relative to the terminal ends. A second element having a plurality of contacts on a first surface thereof is then juxtaposed with the first surface of the first element, and the tip ends of the conductive leads are connected with the contacts of the second microelectronic element. The first and second elements are then moved away from one another so as to vertically extend the conductive leads between the first and second elements. After the moving step, a layer of a spring-like conductive material is formed over the conductive leads to form composite leads. The layer of a spring-like material desirably has greater yield strength than the conductive leads, thereby enhancing the resiliency of the composite lead structure.
Abstract:
A method of fabricating a microelectronic device package is provided. The method includes a continuous processing mode of microelectronic device packages wherein process steps for fabricating the microelectronic device package are performed resulting in savings from the removal of more expensive batch processing steps.
Abstract:
A lead frame type of semiconductor apparatus includes a die pad on which a semiconductor chip is mounted; ground terminals which are to be grounded; power supply terminals which are connected to a power supply; inner leads connected to the ground terminals and power supply terminals, in which a pair of adjacent inner leads for power supply terminal and ground terminal are extended inwardly; a chip capacitor mounting pad which is provided at inner ends of the extended inner leads; and a chip capacitor which is mounted on the chip capacitor mounting pad so that a decoupling capacitor is provided.